Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLo
|
|
26 |
from langchain.document_loaders.generic import GenericLoader
|
27 |
from langchain.document_loaders.parsers import OpenAIWhisperParser
|
28 |
from langchain.schema import AIMessage, HumanMessage
|
29 |
-
from langchain.llms import HuggingFaceHub
|
30 |
from langchain.llms import HuggingFaceTextGenInference
|
31 |
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
32 |
from langchain.retrievers.tavily_search_api import TavilySearchAPIRetriever
|
@@ -93,7 +93,7 @@ MODEL_NAME_CODE = "code-davinci-002"
|
|
93 |
#verfügbare Modelle anzeigen lassen
|
94 |
#HuggingFace Reop ID--------------------------------
|
95 |
#repo_id = "meta-llama/Llama-2-13b-chat-hf"
|
96 |
-
repo_id = "HuggingFaceH4/zephyr-7b-alpha" #das Modell ist echt gut!!! Vom MIT
|
97 |
#repo_id = "TheBloke/Yi-34B-Chat-GGUF"
|
98 |
#repo_id = "meta-llama/Llama-2-70b-chat-hf"
|
99 |
#repo_id = "tiiuae/falcon-40b"
|
@@ -106,6 +106,8 @@ repo_id = "HuggingFaceH4/zephyr-7b-alpha" #das Modell ist echt gut!!! Vom MIT
|
|
106 |
#repo_id = "Writer/camel-5b-hf"
|
107 |
#repo_id = "databricks/dolly-v2-3b"
|
108 |
#repo_id = "google/flan-t5-xxl"
|
|
|
|
|
109 |
|
110 |
#HuggingFace Model name--------------------------------
|
111 |
MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
@@ -534,8 +536,8 @@ def generate_text (prompt, chatbot, history, rag_option, model_option, openai_ap
|
|
534 |
#oder an Hugging Face --------------------------
|
535 |
print("HF Anfrage.......................")
|
536 |
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
|
537 |
-
|
538 |
-
llm =
|
539 |
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
|
540 |
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
|
541 |
#llm via HuggingChat
|
|
|
26 |
from langchain.document_loaders.generic import GenericLoader
|
27 |
from langchain.document_loaders.parsers import OpenAIWhisperParser
|
28 |
from langchain.schema import AIMessage, HumanMessage
|
29 |
+
from langchain.llms import HuggingFaceHub
|
30 |
from langchain.llms import HuggingFaceTextGenInference
|
31 |
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
32 |
from langchain.retrievers.tavily_search_api import TavilySearchAPIRetriever
|
|
|
93 |
#verfügbare Modelle anzeigen lassen
|
94 |
#HuggingFace Reop ID--------------------------------
|
95 |
#repo_id = "meta-llama/Llama-2-13b-chat-hf"
|
96 |
+
#repo_id = "HuggingFaceH4/zephyr-7b-alpha" #das Modell ist echt gut!!! Vom MIT
|
97 |
#repo_id = "TheBloke/Yi-34B-Chat-GGUF"
|
98 |
#repo_id = "meta-llama/Llama-2-70b-chat-hf"
|
99 |
#repo_id = "tiiuae/falcon-40b"
|
|
|
106 |
#repo_id = "Writer/camel-5b-hf"
|
107 |
#repo_id = "databricks/dolly-v2-3b"
|
108 |
#repo_id = "google/flan-t5-xxl"
|
109 |
+
#repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
110 |
+
repo_id = "abacusai/Smaug-72B-v0.1"
|
111 |
|
112 |
#HuggingFace Model name--------------------------------
|
113 |
MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
|
|
536 |
#oder an Hugging Face --------------------------
|
537 |
print("HF Anfrage.......................")
|
538 |
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
|
539 |
+
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
|
540 |
+
#llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
|
541 |
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
|
542 |
#llm = HuggingFaceTextGenInference( inference_server_url="http://localhost:8010/", max_new_tokens=max_new_tokens,top_k=10,top_p=top_p,typical_p=0.95,temperature=temperature,repetition_penalty=repetition_penalty,)
|
543 |
#llm via HuggingChat
|