File size: 17,532 Bytes
af937f5 063f2a2 204683a 27b2a14 af937f5 063f2a2 edd880f 063f2a2 1b7141c 2ff2fc8 063f2a2 2e4f369 063f2a2 2e4f369 063f2a2 af937f5 063f2a2 5c4777a 0b4bbfa 063f2a2 5c4777a 2e4f369 063f2a2 5c4777a b335f8c 063f2a2 b335f8c 063f2a2 5c4777a 063f2a2 18d9524 47a5e53 41b540b 18d9524 5c4777a 9156bad 41b540b 063f2a2 5c4777a 8de518d 063f2a2 196a645 063f2a2 5c4777a 2ff2fc8 956c5d3 063f2a2 2ff2fc8 97ad75d 5cf9e11 97ad75d 2ff2fc8 18d9524 5c4777a 27b2a14 196a645 e79aa48 edd880f e79aa48 196a645 27b2a14 5c4777a 063f2a2 f0634d5 196a645 063f2a2 e79aa48 196a645 063f2a2 60f8be0 8de518d 063f2a2 8de518d 063f2a2 196a645 063f2a2 196a645 063f2a2 196a645 f0634d5 063f2a2 5c4777a 063f2a2 9cbacb5 063f2a2 5c4777a 063f2a2 5c4777a 9156bad 41b540b 9156bad 063f2a2 5c4777a 063f2a2 5c4777a 063f2a2 5c4777a 063f2a2 5b0f25f f96ce19 5b0f25f f96ce19 555c5b0 1b7141c 555c5b0 5b0f25f 5c4777a 27b2a14 1c79a7c 8f3c4e1 5b0f25f 428c948 f96ce19 555c5b0 428c948 5b0f25f 49d2e3d 41b540b 5c4777a 41b540b 063f2a2 4e21196 063f2a2 4e21196 063f2a2 2ff2fc8 5c4777a 674128d 2ff2fc8 5cf9e11 674128d 2ff2fc8 5c4777a 063f2a2 4e21196 1c79a7c 5b0f25f 063f2a2 5b0f25f 063f2a2 5b0f25f 063f2a2 27b2a14 5b0f25f 27b2a14 5b0f25f 27b2a14 f4e05be 5b0f25f 5bf144f 45f8b93 5bf144f 3f585ff 0ad4413 eea8371 f4ca9e4 5b0f25f 57402ef 689b763 32d1f7f 57402ef 6fe5ae6 e6477f6 57402ef e6477f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import os, sys, json
import gradio as gr
import openai
from openai import OpenAI
import time
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader, UnstructuredWordDocumentLoader, DirectoryLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.schema import AIMessage, HumanMessage
from langchain.llms import HuggingFaceHub
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
#from langchain.vectorstores import MongoDBAtlasVectorSearch
#from pymongo import MongoClient
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
#################################################
#globale Variablen
#nur bei ersten Anfrage splitten der Dokumente - um die Vektordatenbank entsprechend zu füllen
splittet = False
##################################################
#Für MongoDB statt Chroma als Vektorstore
#MONGODB_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
#client = MongoClient(MONGODB_URI)
#MONGODB_DB_NAME = "langchain_db"
#MONGODB_COLLECTION_NAME = "gpt-4"
#MONGODB_COLLECTION = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME]
#MONGODB_INDEX_NAME = "default"
#################################################
#Prompt Zusätze
template = """Antworte in deutsch, wenn es nicht explizit anders gefordert wird. Wenn du die Antwort nicht kennst, antworte einfach, dass du es nicht weißt. Versuche nicht, die Antwort zu erfinden oder aufzumocken. Halte die Antwort so kurz aber exakt."""
llm_template = "Beantworte die Frage am Ende. " + template + "Frage: {question} Hilfreiche Antwort: "
rag_template = "Nutze die folgenden Kontext Teile, um die Frage zu beantworten am Ende. " + template + "{context} Frage: {question} Hilfreiche Antwort: "
#################################################
#Konstanten
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"],
template = llm_template)
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"],
template = rag_template)
#Plattform Keys aus den Secrets holen zu diesem Space
HUGGINGFACEHUB_API_TOKEN = os.getenv("HF_ACCESS_READ")
OAI_API_KEY=os.getenv("OPENAI_API_KEY")
#Pfad, wo Docs/Bilder/Filme abgelegt werden können - lokal, also hier im HF Space (sonst auf eigenem Rechner)
PATH_WORK = "."
CHROMA_DIR = "/chroma"
YOUTUBE_DIR = "/youtube"
###############################################
#URLs zu Dokumenten oder andere Inhalte, die einbezogen werden sollen
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
WEB_URL = "https://openai.com/research/gpt-4"
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
#YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
################################################
#LLM Model mit dem gearbeitet wird
#openai
#MODEL_NAME = "gpt-3.5-turbo-16k"
MODEL_NAME ="gpt-4"
#HuggingFace
repo_id = "meta-llama/Llama-2-13b-chat-hf"
#repo_id = "HuggingFaceH4/zephyr-7b-alpha"
#repo_id = "meta-llama/Llama-2-70b-chat-hf"
#repo_id = "tiiuae/falcon-180B-chat"
#repo_id = "Vicuna-33b"
################################################
#HF Hub Zugriff ermöglichen
###############################################
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
#################################################
#Funktionen zur Verarbeitung
################################################
def add_text(history, text):
history = history + [(text, None)]
return history, gr.Textbox(value="", interactive=False)
def add_file(history, file):
history = history + [((file.name,), None)]
return history
# Funktion, um für einen best. File-typ ein directory-loader zu definieren
def create_directory_loader(file_type, directory_path):
#verscheidene Dokument loaders:
loaders = {
'.pdf': PyPDFLoader,
'.word': UnstructuredWordDocumentLoader,
}
return DirectoryLoader(
path=directory_path,
glob=f"**/*{file_type}",
loader_cls=loaders[file_type],
)
#die Inhalte splitten, um in Vektordatenbank entsprechend zu laden als Splits
def document_loading_splitting():
global splittet
##############################
# Document loading
docs = []
# kreiere einen DirectoryLoader für jeden file type
pdf_loader = create_directory_loader('.pdf', './chroma/pdf')
word_loader = create_directory_loader('.word', './chroma/word')
# Load the files
pdf_documents = pdf_loader.load()
word_documents = word_loader.load()
#alle zusammen in docs...
docs.extend(pdf_documents)
docs.extend(word_documents)
#andere loader...
# Load PDF
loader = PyPDFLoader(PDF_URL)
docs.extend(loader.load())
# Load Web
loader = WebBaseLoader(WEB_URL)
docs.extend(loader.load())
# Load YouTube
#loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,YOUTUBE_URL_2], PATH_WORK + YOUTUBE_DIR), OpenAIWhisperParser())
#docs.extend(loader.load())
################################
# Document splitting
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150, chunk_size = 1500)
splits = text_splitter.split_documents(docs)
#nur bei erster Anfrage mit "choma" wird gesplittet...
splittet = True
return splits
#Chroma DB die splits ablegen - vektorisiert...
def document_storage_chroma(splits):
Chroma.from_documents(documents = splits,
embedding = OpenAIEmbeddings(disallowed_special = ()),
persist_directory = PATH_WORK + CHROMA_DIR)
#Mongo DB die splits ablegen - vektorisiert...
def document_storage_mongodb(splits):
MongoDBAtlasVectorSearch.from_documents(documents = splits,
embedding = OpenAIEmbeddings(disallowed_special = ()),
collection = MONGODB_COLLECTION,
index_name = MONGODB_INDEX_NAME)
#dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
def document_retrieval_chroma(llm, prompt):
embeddings = OpenAIEmbeddings()
#Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen
#embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
db = Chroma(embedding_function = embeddings,
persist_directory = PATH_WORK + CHROMA_DIR)
return db
#dokumente in mongo db vektorisiert ablegen können - die Db vorbereiten daüfür
def document_retrieval_mongodb(llm, prompt):
db = MongoDBAtlasVectorSearch.from_connection_string(MONGODB_URI,
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special = ()),
index_name = MONGODB_INDEX_NAME)
return db
###############################################
#Langchain anlegen
#langchain nutzen, um prompt an LLM zu leiten - llm und prompt sind austauschbar
def llm_chain(llm, prompt):
llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
result = llm_chain.run({"question": prompt})
return result
#langchain nutzen, um prompt an llm zu leiten, aber vorher in der VektorDB suchen, um passende splits zum Prompt hinzuzufügen
def rag_chain(llm, prompt, db):
rag_chain = RetrievalQA.from_chain_type(llm,
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
retriever = db.as_retriever(search_kwargs = {"k": 3}),
return_source_documents = True)
result = rag_chain({"query": prompt})
return result["result"]
###################################################
#Prompts mit History erzeugen für verschiednee Modelle
###################################################
#Funktion, die einen Prompt mit der history zusammen erzeugt - allgemein
def generate_prompt_with_history(text, history, max_length=2048):
#prompt = "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!"
#prompt = "Das folgende ist eine Unterhaltung in deutsch zwischen einem Menschen und einem KI-Assistenten, der Baize genannt wird. Baize ist ein open-source KI-Assistent, der von UCSD entwickelt wurde. Der Mensch und der KI-Assistent chatten abwechselnd miteinander in deutsch. Die Antworten des KI Assistenten sind immer so ausführlich wie möglich und in Markdown Schreibweise und in deutscher Sprache. Wenn nötig übersetzt er sie ins Deutsche. Die Antworten des KI-Assistenten vermeiden Themen und Antworten zu unethischen, kontroversen oder sensiblen Themen. Die Antworten sind immer sehr höflich formuliert..\n[|Human|]Hallo!\n[|AI|]Hi!"
prompt=""
history = ["\n{}\n{}".format(x[0],x[1]) for x in history]
history.append("\n{}\n".format(text))
history_text = ""
flag = False
for x in history[::-1]:
history_text = x + history_text
flag = True
if flag:
return prompt+history_text
else:
return None
#Prompt und History für OPenAi Schnittstelle
def generate_prompt_with_history_openai(prompt, history):
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": prompt})
return history_openai_format
#Prompt und History für Hugging Face Schnittstelle
def generate_prompt_with_history_hf(prompt, history):
history_transformer_format = history + [[prompt, ""]]
#stop = StopOnTokens()
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) #curr_system_message +
for item in history_transformer_format])
#Prompt und History für Langchain Schnittstelle
def generate_prompt_with_history_langchain(prompt, history):
history_langchain_format = []
for human, ai in history:
history_langchain_format.append(HumanMessage(content=human))
history_langchain_format.append(AIMessage(content=ai))
history_langchain_format.append(HumanMessage(content=prompt))
return history_langchain_format
###################################################
#Funktion von Gradio aus, die den dort eingegebenen Prompt annimmt und weiterverarbeitet
def invoke (prompt, history, openai_api_key, rag_option, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3,):
global splittet
#Prompt an history anhängen und einen Text daraus machen
history_text_und_prompt = generate_prompt_with_history(prompt, history)
#history für HuggingFace Models formatieren
#history_text_und_prompt = generate_prompt_with_history_hf(prompt, history)
#history für openAi formatieren
#history_text_und_prompt = generate_prompt_with_history_openai(prompt, history)
#history für Langchain formatieren
#history_text_und_prompt = generate_prompt_with_history_langchain(prompt, history)
if (openai_api_key == "" or openai_api_key == "sk-"):
#raise gr.Error("OpenAI API Key is required.")
#eigenen OpenAI key nutzen
openai_api_key= OAI_API_KEY
if (rag_option is None):
raise gr.Error("Retrieval Augmented Generation ist erforderlich.")
if (prompt == ""):
raise gr.Error("Prompt ist erforderlich.")
try:
###########################
#LLM auswählen (OpenAI oder HF)
###########################
#Anfrage an OpenAI
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature = 0)
#oder an Hugging Face
#llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 64})
#llm = HuggingFaceHub(url_??? = "https://wdgsjd6zf201mufn.us-east-1.aws.endpoints.huggingface.cloud", model_kwargs={"temperature": 0.5, "max_length": 64})
#zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
if (rag_option == "Chroma"):
#muss nur einmal ausgeführt werden...
if not splittet:
splits = document_loading_splitting()
document_storage_chroma(splits)
db = document_retrieval_chroma(llm, history_text_und_prompt)
result = rag_chain(llm, history_text_und_prompt, db)
elif (rag_option == "MongoDB"):
#splits = document_loading_splitting()
#document_storage_mongodb(splits)
db = document_retrieval_mongodb(llm, history_text_und_prompt)
result = rag_chain(llm, history_text_und_prompt, db)
else:
result = llm_chain(llm, history_text_und_prompt)
except Exception as e:
raise gr.Error(e)
#Antwort als Stream ausgeben...
for i in range(len(result)):
time.sleep(0.05)
yield result[: i+1]
################################################
#GUI
###############################################
#Beschreibung oben in GUI
################################################
title = "LLM mit RAG"
description = """<strong>Überblick:</strong> Hier wird ein <strong>Large Language Model (LLM)</strong> mit
<strong>Retrieval Augmented Generation (RAG)</strong> auf <strong>externen Daten</strong> demonstriert.\n\n
<strong>Genauer:</strong> Folgende externe Daten sind als Beispiel gegeben:
<a href='""" + YOUTUBE_URL_1 + """'>YouTube</a>, <a href='""" + PDF_URL + """'>PDF</a>, and <a href='""" + WEB_URL + """'>Web.</a> <br>
Alle neueren Datums!.
<ul style="list-style-type:square;">
<li>Setze "Retrieval Augmented Generation" auf "<strong>Off</strong>" und gib einen Prompt ein." Das entspricht <strong> ein LLM nutzen ohne RAG</strong></li>
<li>Setze "Retrieval Augmented Generation" to "<strong>Chroma</strong>" und gib einen Prompt ein. Das <strong>LLM mit RAG</strong> weiß auch Antworten zu aktuellen Themen aus den angefügten Datenquellen</li>
<li>Experimentiere mit Prompts, z.B. Antworte in deutsch, englisch, ..." oder "schreibe ein Python Programm, dass die GPT-4 API aufruft."</li>
</ul>\n\n
"""
css = """.toast-wrap { display: none !important } """
examples=[['Was ist ChtGPT-4?'],['schreibe ein Python Programm, dass die GPT-4 API aufruft.']]
def vote(data: gr.LikeData):
if data.liked: print("You upvoted this response: " + data.value)
else: print("You downvoted this response: " + data.value)
additional_inputs = [
gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1),
#gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"),
gr.Radio(["Off", "Chroma"], label="Retrieval Augmented Generation", value = "Off"),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Höhere Werte erzeugen diversere Antworten"),
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=4096, step=64, interactive=True, info="Maximale Anzahl neuer Tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Höhere Werte verwenden auch Tokens mit niedrigerer Wahrscheinlichkeit."),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens")
]
chatbot_stream = gr.Chatbot()
chat_interface_stream = gr.ChatInterface(fn=invoke,
#additional_inputs = additional_inputs,
title = "Generative AI - LLM & RAG",
theme="soft",
chatbot=chatbot_stream,
retry_btn="Wiederholen",
undo_btn="Letztes löschen",
clear_btn="Verlauf löschen",
additional_inputs=additional_inputs,
description = description)
with gr.Blocks() as demo:
with gr.Tab("Chatbot"):
chatbot_stream.like(vote, None, None)
chat_interface_stream.queue().launch() |