Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ import re
|
|
8 |
import io
|
9 |
from PIL import Image, ImageDraw, ImageOps, ImageFont
|
10 |
from base64 import b64encode
|
|
|
11 |
|
12 |
from langchain.chains import LLMChain, RetrievalQA
|
13 |
from langchain.chat_models import ChatOpenAI
|
@@ -76,6 +77,7 @@ HEADERS = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
|
76 |
PATH_WORK = "."
|
77 |
CHROMA_DIR = "/chroma"
|
78 |
YOUTUBE_DIR = "/youtube"
|
|
|
79 |
|
80 |
###############################################
|
81 |
#URLs zu Dokumenten oder andere Inhalte, die einbezogen werden sollen
|
@@ -154,10 +156,21 @@ def umwandeln_fuer_anzeige(image):
|
|
154 |
return buffer.getvalue()
|
155 |
|
156 |
def process_image(image_path, prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
# Convert image to base64
|
158 |
-
with open(image_path, "rb") as image_file:
|
|
|
159 |
encoded_string = b64encode(image_file.read()).decode()
|
160 |
-
|
|
|
161 |
# Prepare the data for the API request (specific to the API you're using)
|
162 |
data = {
|
163 |
'image': encoded_string,
|
@@ -392,15 +405,10 @@ def generate_auswahl(prompt, file, chatbot, history, rag_option, model_option, o
|
|
392 |
result = response.content
|
393 |
#Bild ausgeben
|
394 |
image = Image.open(io.BytesIO(result))
|
395 |
-
print("result image...............")
|
396 |
-
print (image)
|
397 |
image_64 = umwandeln_fuer_anzeige(image)
|
398 |
-
print("result image 64...............")
|
399 |
-
print (image_64)
|
400 |
chatbot[-1][1] = "<img src='data:image/png;base64,{0}'/>".format(b64encode(image_64).decode('utf-8'))
|
401 |
history = history + [(prompt, result)]
|
402 |
-
|
403 |
-
print(chatbot)
|
404 |
return chatbot, history, "Success"
|
405 |
else:
|
406 |
result = generate_text(prompt, file, chatbot, history, rag_option, model_option, openai_api_key, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,)
|
@@ -410,11 +418,7 @@ def generate_auswahl(prompt, file, chatbot, history, rag_option, model_option, o
|
|
410 |
history = history + [(prompt, result)]
|
411 |
else:
|
412 |
history = history + [((file,), None),(prompt, result)]
|
413 |
-
|
414 |
-
print("history nach Zusatz und mit KI Antwort...........")
|
415 |
-
print(history)
|
416 |
-
print("chatbot nach Zusatz und mit KI Antwort...........")
|
417 |
-
print(chatbot)
|
418 |
return chatbot, history, "Success"
|
419 |
"""
|
420 |
for character in result:
|
@@ -452,13 +456,7 @@ def generate_text (prompt, file, chatbot, history, rag_option, model_option, ope
|
|
452 |
if (file == None):
|
453 |
history_text_und_prompt = generate_prompt_with_history_openai(prompt, history)
|
454 |
else:
|
455 |
-
print("file bild uplad....................")
|
456 |
-
print(file)
|
457 |
-
#image = Image.open(io.BytesIO(file_anzeigen))
|
458 |
-
#image_64 = umwandeln_fuer_anzeige(image)
|
459 |
prompt_neu = process_image(file, prompt)
|
460 |
-
print("prompt_neu............................")
|
461 |
-
print(prompt_neu)
|
462 |
history_text_und_prompt = generate_prompt_with_history_openai(prompt_neu, history)
|
463 |
|
464 |
#history für HuggingFace Models formatieren
|
|
|
8 |
import io
|
9 |
from PIL import Image, ImageDraw, ImageOps, ImageFont
|
10 |
from base64 import b64encode
|
11 |
+
import shutil
|
12 |
|
13 |
from langchain.chains import LLMChain, RetrievalQA
|
14 |
from langchain.chat_models import ChatOpenAI
|
|
|
77 |
PATH_WORK = "."
|
78 |
CHROMA_DIR = "/chroma"
|
79 |
YOUTUBE_DIR = "/youtube"
|
80 |
+
HISTORY_PFAD = "/data/history"
|
81 |
|
82 |
###############################################
|
83 |
#URLs zu Dokumenten oder andere Inhalte, die einbezogen werden sollen
|
|
|
156 |
return buffer.getvalue()
|
157 |
|
158 |
def process_image(image_path, prompt):
|
159 |
+
#Bild aus tmp in Space ablegen
|
160 |
+
#temp_image_path = "/tmp/gradio/01834b95fcf793903d65ab947cc410dc1600d0df/bbb 1.png"
|
161 |
+
# Zielverzeichnis für das dauerhafte Bild
|
162 |
+
#target_directory = HISTORY_PFAD
|
163 |
+
# Ziel-Pfad für das dauerhafte Bild
|
164 |
+
#target_image_path = os.path.join(target_directory, "bbb 1.png")
|
165 |
+
# Kopieren Sie das temporäre Bild in das Zielverzeichnis
|
166 |
+
#shutil.copy(temp_image_path, target_image_path)
|
167 |
+
|
168 |
# Convert image to base64
|
169 |
+
#with open(image_path, "rb") as image_file:
|
170 |
+
with open("data/history/bbb 1.png", "rb") as image_file:
|
171 |
encoded_string = b64encode(image_file.read()).decode()
|
172 |
+
print ("necoded string.................")
|
173 |
+
print(encoded_string)
|
174 |
# Prepare the data for the API request (specific to the API you're using)
|
175 |
data = {
|
176 |
'image': encoded_string,
|
|
|
405 |
result = response.content
|
406 |
#Bild ausgeben
|
407 |
image = Image.open(io.BytesIO(result))
|
|
|
|
|
408 |
image_64 = umwandeln_fuer_anzeige(image)
|
|
|
|
|
409 |
chatbot[-1][1] = "<img src='data:image/png;base64,{0}'/>".format(b64encode(image_64).decode('utf-8'))
|
410 |
history = history + [(prompt, result)]
|
411 |
+
|
|
|
412 |
return chatbot, history, "Success"
|
413 |
else:
|
414 |
result = generate_text(prompt, file, chatbot, history, rag_option, model_option, openai_api_key, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,)
|
|
|
418 |
history = history + [(prompt, result)]
|
419 |
else:
|
420 |
history = history + [((file,), None),(prompt, result)]
|
421 |
+
|
|
|
|
|
|
|
|
|
422 |
return chatbot, history, "Success"
|
423 |
"""
|
424 |
for character in result:
|
|
|
456 |
if (file == None):
|
457 |
history_text_und_prompt = generate_prompt_with_history_openai(prompt, history)
|
458 |
else:
|
|
|
|
|
|
|
|
|
459 |
prompt_neu = process_image(file, prompt)
|
|
|
|
|
460 |
history_text_und_prompt = generate_prompt_with_history_openai(prompt_neu, history)
|
461 |
|
462 |
#history für HuggingFace Models formatieren
|