Spaces:
Sleeping
Sleeping
## Import Modules | |
from langchain.document_loaders.csv_loader import CSVLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain import OpenAI | |
from langchain.chains import RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.prompts import PromptTemplate | |
from langchain.prompts.few_shot import FewShotPromptTemplate | |
import os | |
# Web App | |
import hmac | |
import streamlit as st | |
from streamlit_chat import message | |
from PIL import Image | |
os.environ['OPENAI_API_KEY'] = st.secrets["OPENAI_API_KEY"] | |
def check_password(): | |
"""Returns `True` if the user had the correct password.""" | |
def password_entered(): | |
"""Checks whether a password entered by the user is correct.""" | |
# Add at secret | |
if hmac.compare_digest(st.session_state["password"], st.secrets["password"]): | |
st.session_state["password_correct"] = True | |
del st.session_state["password"] # Don't store the password. | |
else: | |
st.session_state["password_correct"] = False | |
# Return True if the passward is validated. | |
if st.session_state.get("password_correct", False): | |
return True | |
# Show input for password. | |
st.text_input( | |
"Password", type="password", on_change=password_entered, key="password" | |
) | |
if "password_correct" in st.session_state: | |
st.error("π Password incorrect") | |
return False | |
if not check_password(): | |
st.stop() # Do not continue if check_password is not True. | |
# μ£Όμ λΆλΆ μλμΌλ‘ λλ μμ κ°μ | |
loader = CSVLoader(file_path='./books_paragraphs_data.csv', | |
encoding='utf-8', | |
source_column="Book", | |
csv_args={ | |
# 'delimiter': ',', | |
# 'quotechar': '"', | |
# 'fieldnames': ['Paragraph ID', 'Paragraph'], : Section λΆλΆκΉμ§ νμμ λ€μ΄κ°λ©΄ λΆμ νν μλ? μ¬μ€ ν¬κ² μν₯ μμμλ μλ€. | |
# 'fieldnames': ['Section', 'Paragraph ID', 'Paragraph'], | |
}) | |
docs = loader.load() | |
## Get data | |
# Get your text splitter ready | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | |
# Split your documents into texts | |
texts = text_splitter.split_documents(docs) | |
# Turn your texts into embeddings | |
embeddings = OpenAIEmbeddings() # model="text-embedding-ada-002" | |
# Get your docsearch ready | |
# docsearch = FAISS.from_documents(texts, embeddings) | |
# Save your docsearch | |
# docsearch.save_local("faiss_index") | |
# Load your docsearch | |
docsearch = FAISS.load_local("kant_faiss_index", embeddings) | |
from langchain.callbacks.base import BaseCallbackHandler | |
class MyCustomHandler(BaseCallbackHandler): | |
def __init__(self): | |
super().__init__() | |
self.tokens = [] | |
def on_llm_new_token(self, token: str, **kwargs) -> None: | |
# print(f"My custom handler, token: {token}") | |
global full_response | |
global message_placeholder | |
self.tokens.append(token) | |
# print(self.tokens) | |
full_response += token | |
message_placeholder.markdown(full_response + "β") | |
# Load up your LLM | |
# llm = OpenAI() # 'text-davinci-003', model_name="gpt-4" | |
chat = ChatOpenAI(model_name="gpt-4", temperature=0.7, streaming=True, callbacks=[MyCustomHandler()]) # gpt-3.5-turbo, gpt-3.5-turbo-16k, gpt-4-32k : μ μ λ Prompt 7μ₯μ λ£μΌλ €λ©΄ Promptλ§ 4k μ΄μμ΄μ΄μΌ ν¨ | |
prompt_template = """Imagine yourself as the philosopher Immanuel Kant, living in the 18th century. Engage in a dialogue as him, expressing his views. Be eloquent and reasoned, as befits a man of Hume's intellect and rhetorical skill. Always keep a friendly and conversational tone. Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
{context} | |
Question: {question} | |
Answer:""" | |
PROMPT = PromptTemplate( | |
template=prompt_template, input_variables=["context", "question"] | |
) | |
chain_type_kwargs = {"prompt": PROMPT} | |
qa = RetrievalQA.from_chain_type(llm=chat, | |
chain_type="stuff", | |
retriever=docsearch.as_retriever(search_type="mmr", search_kwargs={'k': 10}), | |
chain_type_kwargs=chain_type_kwargs, | |
return_source_documents=True) | |
img = Image.open('resource/kant.jpg') | |
# def generate_response(prompt): | |
# # query = "How do you define the notion of a cause in his A Treatise of Human Nature? And how is it different from the traditional definition that you reject?" | |
# result = qa({"query": prompt}) | |
# message = result['result'] | |
# sources = [] | |
# for src in result['source_documents']: | |
# if src.page_content.startswith('Paragraph:'): | |
# sources.append(src.metadata['source']) | |
# if len(sources)==0: | |
# message = message + "\n\n[No sources]" | |
# else: | |
# message = message + "\n\n[" + ", ".join(sources) + "]" | |
# return message | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.write(' ') | |
with col2: | |
st.image(img) | |
with col3: | |
st.write(' ') | |
st.header("Chat with Kant (Demo)") | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
if prompt := st.chat_input("What is up?"): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
result = qa({"query": prompt}) | |
sources = set() | |
for src in result['source_documents']: | |
if src.page_content.startswith('Paragraph:'): | |
sources.add(src.metadata['source']) | |
sources = list(sources) | |
if len(sources)==0: | |
full_response = full_response + "\n\n[No sources]" | |
else: | |
full_response = full_response + "\n\n[" + ", ".join(sources) + "]" | |
message_placeholder.markdown(full_response) | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) |