Spaces:
Sleeping
Sleeping
File size: 6,358 Bytes
4298efb 9845a0e 4298efb 9845a0e 4298efb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
## Import Modules
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain import OpenAI
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.prompts.few_shot import FewShotPromptTemplate
import os
# Web App
import hmac
import streamlit as st
from streamlit_chat import message
from PIL import Image
os.environ['OPENAI_API_KEY'] = st.secrets["OPENAI_API_KEY"]
def check_password():
"""Returns `True` if the user had the correct password."""
def password_entered():
"""Checks whether a password entered by the user is correct."""
# Add at secret
if hmac.compare_digest(st.session_state["password"], st.secrets["password"]):
st.session_state["password_correct"] = True
del st.session_state["password"] # Don't store the password.
else:
st.session_state["password_correct"] = False
# Return True if the passward is validated.
if st.session_state.get("password_correct", False):
return True
# Show input for password.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
if "password_correct" in st.session_state:
st.error("π Password incorrect")
return False
if not check_password():
st.stop() # Do not continue if check_password is not True.
# μ£Όμ λΆλΆ μλμΌλ‘ λλ μμ κ°μ
loader = CSVLoader(file_path='./books_paragraphs_data.csv',
encoding='utf-8',
source_column="Book",
csv_args={
# 'delimiter': ',',
# 'quotechar': '"',
# 'fieldnames': ['Paragraph ID', 'Paragraph'], : Section λΆλΆκΉμ§ νμμ λ€μ΄κ°λ©΄ λΆμ νν μλ? μ¬μ€ ν¬κ² μν₯ μμμλ μλ€.
# 'fieldnames': ['Section', 'Paragraph ID', 'Paragraph'],
})
docs = loader.load()
## Get data
# Get your text splitter ready
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
# Split your documents into texts
texts = text_splitter.split_documents(docs)
# Turn your texts into embeddings
embeddings = OpenAIEmbeddings() # model="text-embedding-ada-002"
# Get your docsearch ready
# docsearch = FAISS.from_documents(texts, embeddings)
# Save your docsearch
# docsearch.save_local("faiss_index")
# Load your docsearch
docsearch = FAISS.load_local("kant_faiss_index", embeddings)
from langchain.callbacks.base import BaseCallbackHandler
class MyCustomHandler(BaseCallbackHandler):
def __init__(self):
super().__init__()
self.tokens = []
def on_llm_new_token(self, token: str, **kwargs) -> None:
# print(f"My custom handler, token: {token}")
global full_response
global message_placeholder
self.tokens.append(token)
# print(self.tokens)
full_response += token
message_placeholder.markdown(full_response + "β")
# Load up your LLM
# llm = OpenAI() # 'text-davinci-003', model_name="gpt-4"
chat = ChatOpenAI(model_name="gpt-4", temperature=0.7, streaming=True, callbacks=[MyCustomHandler()]) # gpt-3.5-turbo, gpt-3.5-turbo-16k, gpt-4-32k : μ μ λ Prompt 7μ₯μ λ£μΌλ €λ©΄ Promptλ§ 4k μ΄μμ΄μ΄μΌ ν¨
prompt_template = """Imagine yourself as the philosopher Immanuel Kant, living in the 18th century. Engage in a dialogue as him, expressing his views. Be eloquent and reasoned, as befits a man of Hume's intellect and rhetorical skill. Always keep a friendly and conversational tone. Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
Answer:"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}
qa = RetrievalQA.from_chain_type(llm=chat,
chain_type="stuff",
retriever=docsearch.as_retriever(search_type="mmr", search_kwargs={'k': 10}),
chain_type_kwargs=chain_type_kwargs,
return_source_documents=True)
img = Image.open('resource/kant.jpg')
# def generate_response(prompt):
# # query = "How do you define the notion of a cause in his A Treatise of Human Nature? And how is it different from the traditional definition that you reject?"
# result = qa({"query": prompt})
# message = result['result']
# sources = []
# for src in result['source_documents']:
# if src.page_content.startswith('Paragraph:'):
# sources.append(src.metadata['source'])
# if len(sources)==0:
# message = message + "\n\n[No sources]"
# else:
# message = message + "\n\n[" + ", ".join(sources) + "]"
# return message
col1, col2, col3 = st.columns(3)
with col1:
st.write(' ')
with col2:
st.image(img)
with col3:
st.write(' ')
st.header("Chat with Kant (Demo)")
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("What is up?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
result = qa({"query": prompt})
sources = set()
for src in result['source_documents']:
if src.page_content.startswith('Paragraph:'):
sources.add(src.metadata['source'])
sources = list(sources)
if len(sources)==0:
full_response = full_response + "\n\n[No sources]"
else:
full_response = full_response + "\n\n[" + ", ".join(sources) + "]"
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response}) |