Spaces:
Runtime error
Runtime error
File size: 5,978 Bytes
95f7ff3 5880c96 9861c09 50639ab 2e937f5 5880c96 2e73823 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 5880c96 9861c09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import requests
import json
import os
api_token = os.environ.get("TOKEN")
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
headers = {"Authorization": f"Bearer {api_token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def analyze_sentiment(text):
output = query({
"inputs": f'''
system
You're going to deeply analyze the texts I'm going to give you and you're only going to tell me which category they belong to by answering only the words that correspond to the following categories:
For posts that talk about chat models/LLM, return "Chatmodel/LLM"
For posts that talk about image generation models, return "image_generation"
For texts that ask for information from the community, return "questions"
For posts about fine-tuning or model adjustment, return "fine_tuning"
For posts related to ethics and bias in AI, return "ethics_bias"
For posts about datasets and data preparation, return "datasets"
For posts about tools and libraries, return "tools_libraries"
For posts containing tutorials and guides, return "tutorials_guides"
For posts about debugging and problem-solving, return "debugging"
Respond only with the category name, without any additional explanation or text.
user
{text}
assistant
'''
})
if isinstance(output, list) and len(output) > 0:
response = output[0].get('generated_text', '').strip().lower()
questions = response.count('questions')
chat_model_llm = response.count('chatmodel/llm')
other = response.count('other')
image_generation = response.count("image_generation")
fine_tuning = response.count("fine_tuning")
ethics_bias = response.count("ethics_bias")
datasets = response.count("datasets")
tools_libraries = response.count("tools_libraries")
tutorials_guides = response.count("tutorials_guides")
debugging = response.count("debugging")
if questions == 2:
return 'questions'
elif chat_model_llm == 2:
return 'Chat Model/LLM'
elif other == 2:
return "Other"
elif image_generation == 2:
return "Image Generation"
elif fine_tuning == 2:
return "Fine-tuning"
elif ethics_bias == 2:
return "Ethics and Bias"
elif datasets == 2:
return "Datasets"
elif tools_libraries == 2:
return "Tools and Libraries"
elif tutorials_guides == 2:
return "Tutorials and Guides"
elif debugging == 2:
return "Debugging"
else:
return f"Erreur: Réponse ambiguë - '{response}'"
# URL de base de l'API
base_url = "https://huggingface.co/api/posts"
# Paramètres pour la pagination
skip = 0 # Nombre d'éléments à sauter
limit = 100 # Nombre maximal d'éléments à récupérer par requête
# Liste pour stocker tous les posts avec leur texte
all_posts_with_text = []
while True:
# Construire l'URL avec les paramètres de pagination
url = f"{base_url}?skip={skip}&limit={limit}&sort=recent"
# Effectuer une requête HTTP pour récupérer les données
response = requests.get(url)
# Vérifier si la requête a réussi
if response.status_code == 200:
# Charger les données JSON à partir du contenu de la réponse
data = response.json()
# Vérifier s'il y a des posts à ajouter
if not data["socialPosts"]:
break # Sortir de la boucle si aucun post n'est retourné
# Ajouter les posts récupérés à la liste avec leur texte
for post in data["socialPosts"]:
post_text = ""
for item in post["content"]:
if item["type"] == "text":
post_text += item["value"] + " "
all_posts_with_text.append({"slug": post["slug"], "text": post_text.strip()})
# Mettre à jour le paramètre skip pour la prochaine requête
skip += limit
else:
print(f"Erreur lors de la récupération des données: {response.status_code}")
break
# Maintenant, all_posts_with_text contient tous les posts récupérés avec leur texte
questions_count = 0
chat_model_llm_count = 0
other_count = 0
image_generation_count = 0
fine_tuning_count = 0
ethics_and_bias_count = 0
datasets_count = 0
tools_and_libraries_count = 0
tutorials_and_guides_count = 0
debugging_count = 0
# Appliquer votre algorithme d'analyse à tous les posts
for i, post in enumerate(all_posts_with_text, 1):
slug = post["slug"]
text = post["text"]
# Appeler votre algorithme d'analyse
resultat = analyze_sentiment(text)
if resultat == 'questions':
questions_count += 1
elif resultat == "Chat Model/LLM":
chat_model_llm_count += 1
elif resultat == 'Other':
other_count += 1
elif resultat == "Image Generation":
image_generation_count += 1
elif resultat == "Fine-tuning":
fine_tuning_count += 1
elif resultat == "Ethics and Bias":
ethics_and_bias_count += 1
elif resultat == 'Datasets':
datasets_count += 1
elif resultat == 'Tools and Libraries':
tools_and_libraries_count += 1
elif resultat == "Tutorials and Guides":
tutorials_and_guides_count += 1
elif resultat == "Debugging":
debugging_count += 1
# Vous pouvez adapter votre algorithme d'analyse selon vos besoins spécifiques
print(f"Questions: {questions_count}")
print(f"Chat Model/LLM: {chat_model_llm_count}")
print(f"Other: {other_count}")
print(f"Image Generation: {image_generation_count}")
print(f"Fine-tuning: {fine_tuning_count}")
print(f"Ethics and Bias: {ethics_and_bias_count}")
print(f"Datasets: {datasets_count}")
print(f"Tools and Libraries: {tools_and_libraries_count}")
print(f"Tutorials and Guides: {tutorials_and_guides_count}")
print(f"Debugging: {debugging_count}")
|