Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import requests
|
2 |
import json
|
3 |
-
import os
|
|
|
4 |
|
5 |
api_token = os.environ.get("TOKEN")
|
6 |
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
@@ -37,7 +38,7 @@ assistant
|
|
37 |
response = output[0].get('generated_text', '').strip().lower()
|
38 |
|
39 |
questions = response.count('questions')
|
40 |
-
|
41 |
other = response.count('other')
|
42 |
image_generation = response.count("image_generation")
|
43 |
fine_tuning = response.count("fine_tuning")
|
@@ -49,9 +50,9 @@ assistant
|
|
49 |
|
50 |
if questions == 2:
|
51 |
return 'questions'
|
52 |
-
elif
|
53 |
return 'Chat Model/LLM'
|
54 |
-
elif other == 2:
|
55 |
return "Other"
|
56 |
elif image_generation == 2:
|
57 |
return "Image Generation"
|
@@ -71,11 +72,11 @@ assistant
|
|
71 |
return f"Erreur: Réponse ambiguë - '{response}'"
|
72 |
|
73 |
# URL de base de l'API
|
74 |
-
base_url = "https://huggingface.co/api/posts
|
75 |
|
76 |
# Paramètres pour la pagination
|
77 |
skip = 0 # Nombre d'éléments à sauter
|
78 |
-
limit =
|
79 |
|
80 |
# Liste pour stocker tous les posts avec leur texte
|
81 |
all_posts_with_text = []
|
@@ -113,8 +114,16 @@ while True:
|
|
113 |
|
114 |
# Maintenant, all_posts_with_text contient tous les posts récupérés avec leur texte
|
115 |
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
# Appliquer votre algorithme d'analyse à tous les posts
|
120 |
for i, post in enumerate(all_posts_with_text, 1):
|
@@ -124,40 +133,36 @@ for i, post in enumerate(all_posts_with_text, 1):
|
|
124 |
# Appeler votre algorithme d'analyse
|
125 |
resultat = analyze_sentiment(text)
|
126 |
|
127 |
-
# Incrémenter les compteurs en fonction du résultat
|
128 |
if resultat == 'questions':
|
129 |
questions_count += 1
|
130 |
elif resultat == "Chat Model/LLM":
|
131 |
-
|
132 |
elif resultat == 'Other':
|
133 |
-
|
134 |
elif resultat == "Image Generation":
|
135 |
-
|
136 |
elif resultat == "Fine-tuning":
|
137 |
-
|
138 |
elif resultat == "Ethics and Bias":
|
139 |
-
|
140 |
elif resultat == 'Datasets':
|
141 |
-
|
142 |
elif resultat == 'Tools and Libraries':
|
143 |
-
|
144 |
elif resultat == "Tutorials and Guides":
|
145 |
-
|
146 |
elif resultat == "Debugging":
|
147 |
-
|
148 |
-
|
149 |
-
#
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
f"Debugging: {Debugging_count}"
|
162 |
-
|
163 |
-
)
|
|
|
1 |
import requests
|
2 |
import json
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
|
6 |
api_token = os.environ.get("TOKEN")
|
7 |
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
|
|
38 |
response = output[0].get('generated_text', '').strip().lower()
|
39 |
|
40 |
questions = response.count('questions')
|
41 |
+
chat_model_llm = response.count('chatmodel/llm')
|
42 |
other = response.count('other')
|
43 |
image_generation = response.count("image_generation")
|
44 |
fine_tuning = response.count("fine_tuning")
|
|
|
50 |
|
51 |
if questions == 2:
|
52 |
return 'questions'
|
53 |
+
elif chat_model_llm == 2:
|
54 |
return 'Chat Model/LLM'
|
55 |
+
elif other == 2:
|
56 |
return "Other"
|
57 |
elif image_generation == 2:
|
58 |
return "Image Generation"
|
|
|
72 |
return f"Erreur: Réponse ambiguë - '{response}'"
|
73 |
|
74 |
# URL de base de l'API
|
75 |
+
base_url = "https://huggingface.co/api/posts"
|
76 |
|
77 |
# Paramètres pour la pagination
|
78 |
skip = 0 # Nombre d'éléments à sauter
|
79 |
+
limit = 100 # Nombre maximal d'éléments à récupérer par requête
|
80 |
|
81 |
# Liste pour stocker tous les posts avec leur texte
|
82 |
all_posts_with_text = []
|
|
|
114 |
|
115 |
# Maintenant, all_posts_with_text contient tous les posts récupérés avec leur texte
|
116 |
|
117 |
+
questions_count = 0
|
118 |
+
chat_model_llm_count = 0
|
119 |
+
other_count = 0
|
120 |
+
image_generation_count = 0
|
121 |
+
fine_tuning_count = 0
|
122 |
+
ethics_and_bias_count = 0
|
123 |
+
datasets_count = 0
|
124 |
+
tools_and_libraries_count = 0
|
125 |
+
tutorials_and_guides_count = 0
|
126 |
+
debugging_count = 0
|
127 |
|
128 |
# Appliquer votre algorithme d'analyse à tous les posts
|
129 |
for i, post in enumerate(all_posts_with_text, 1):
|
|
|
133 |
# Appeler votre algorithme d'analyse
|
134 |
resultat = analyze_sentiment(text)
|
135 |
|
|
|
136 |
if resultat == 'questions':
|
137 |
questions_count += 1
|
138 |
elif resultat == "Chat Model/LLM":
|
139 |
+
chat_model_llm_count += 1
|
140 |
elif resultat == 'Other':
|
141 |
+
other_count += 1
|
142 |
elif resultat == "Image Generation":
|
143 |
+
image_generation_count += 1
|
144 |
elif resultat == "Fine-tuning":
|
145 |
+
fine_tuning_count += 1
|
146 |
elif resultat == "Ethics and Bias":
|
147 |
+
ethics_and_bias_count += 1
|
148 |
elif resultat == 'Datasets':
|
149 |
+
datasets_count += 1
|
150 |
elif resultat == 'Tools and Libraries':
|
151 |
+
tools_and_libraries_count += 1
|
152 |
elif resultat == "Tutorials and Guides":
|
153 |
+
tutorials_and_guides_count += 1
|
154 |
elif resultat == "Debugging":
|
155 |
+
debugging_count += 1
|
156 |
+
|
157 |
+
# Vous pouvez adapter votre algorithme d'analyse selon vos besoins spécifiques
|
158 |
+
|
159 |
+
print(f"Questions: {questions_count}")
|
160 |
+
print(f"Chat Model/LLM: {chat_model_llm_count}")
|
161 |
+
print(f"Other: {other_count}")
|
162 |
+
print(f"Image Generation: {image_generation_count}")
|
163 |
+
print(f"Fine-tuning: {fine_tuning_count}")
|
164 |
+
print(f"Ethics and Bias: {ethics_and_bias_count}")
|
165 |
+
print(f"Datasets: {datasets_count}")
|
166 |
+
print(f"Tools and Libraries: {tools_and_libraries_count}")
|
167 |
+
print(f"Tutorials and Guides: {tutorials_and_guides_count}")
|
168 |
+
print(f"Debugging: {debugging_count}")
|
|
|
|
|
|