File size: 6,226 Bytes
8ced4d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import logging
import os
from enum import Enum
from pathlib import Path

import numpy as np
import torch
import torch.distributed as dist


IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"

SHORT_QUESTION_LIST = [
    DEFAULT_IMAGE_TOKEN + "\n" + "Can you segment the {class_name} in this image?",
    DEFAULT_IMAGE_TOKEN + "\n" + "Please segment the {class_name} in this image.",
    DEFAULT_IMAGE_TOKEN
    + "\n"
    + "What is {class_name} in this image? Please respond with segmentation mask.",
    DEFAULT_IMAGE_TOKEN
    + "\n"
    + "What is {class_name} in this image? Please output segmentation mask.",
]

LONG_QUESTION_LIST = [
    DEFAULT_IMAGE_TOKEN + "\n" + "{sent} Please respond with segmentation mask.",
    DEFAULT_IMAGE_TOKEN + "\n" + "{sent} Please output segmentation mask.",
]

EXPLANATORY_QUESTION_LIST = [
    "Please output segmentation mask and explain why.",
    "Please output segmentation mask and explain the reason.",
    "Please output segmentation mask and give some explanation.",
]

ANSWER_LIST = [
    "It is [SEG].",
    "Sure, [SEG].",
    "Sure, it is [SEG].",
    "Sure, the segmentation result is [SEG].",
    "[SEG].",
]
ROOT = Path(__file__).parent.parent.parent
PROJECT_ROOT_FOLDER = os.getenv("PROJECT_ROOT_FOLDER", ROOT)
RESOURCES_FOLDER = os.getenv("RESOURCES_FOLDER", Path(PROJECT_ROOT_FOLDER) / "resources")
FASTAPI_STATIC = os.getenv("FASTAPI_STATIC", ROOT / "static")
VIS_OUTPUT = os.getenv("VIS_OUTPUT", ROOT / "vis_output")


class Summary(Enum):
    NONE = 0
    AVERAGE = 1
    SUM = 2
    COUNT = 3


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self, name, fmt=":f", summary_type=Summary.AVERAGE):
        self.name = name
        self.fmt = fmt
        self.summary_type = summary_type
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def all_reduce(self):
        device = "cuda" if torch.cuda.is_available() else "cpu"
        if isinstance(self.sum, np.ndarray):
            total = torch.tensor(
                self.sum.tolist()
                + [
                    self.count,
                ],
                dtype=torch.float32,
                device=device,
            )
        else:
            total = torch.tensor(
                [self.sum, self.count], dtype=torch.float32, device=device
            )

        dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
        if total.shape[0] > 2:
            self.sum, self.count = total[:-1].cpu().numpy(), total[-1].cpu().item()
        else:
            self.sum, self.count = total.tolist()
        self.avg = self.sum / (self.count + 1e-5)

    def __str__(self):
        fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
        return fmtstr.format(**self.__dict__)

    def summary(self):
        fmtstr = ""
        if self.summary_type is Summary.NONE:
            fmtstr = ""
        elif self.summary_type is Summary.AVERAGE:
            fmtstr = "{name} {avg:.3f}"
        elif self.summary_type is Summary.SUM:
            fmtstr = "{name} {sum:.3f}"
        elif self.summary_type is Summary.COUNT:
            fmtstr = "{name} {count:.3f}"
        else:
            raise ValueError("invalid summary type %r" % self.summary_type)

        return fmtstr.format(**self.__dict__)


def intersectionAndUnionGPU(output, target, K, ignore_index=255):
    # 'K' classes, output and target sizes are N or N * L or N * H * W, each value in range 0 to K - 1.
    assert output.dim() in [1, 2, 3]
    assert output.shape == target.shape
    output = output.view(-1)
    target = target.view(-1)
    output[target == ignore_index] = ignore_index
    intersection = output[output == target]
    area_intersection = torch.histc(intersection, bins=K, min=0, max=K - 1)
    area_output = torch.histc(output, bins=K, min=0, max=K - 1)
    area_target = torch.histc(target, bins=K, min=0, max=K - 1)
    area_union = area_output + area_target - area_intersection
    return area_intersection, area_union, area_target


class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print("\t".join(entries))

    def display_summary(self):
        entries = [" *"]
        entries += [meter.summary() for meter in self.meters]
        print(" ".join(entries))

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = "{:" + str(num_digits) + "d}"
        return "[" + fmt + "/" + fmt.format(num_batches) + "]"


def dict_to_cuda(input_dict):
    for k, v in input_dict.items():
        if isinstance(input_dict[k], torch.Tensor):
            input_dict[k] = v.cuda(non_blocking=True)
        elif (
            isinstance(input_dict[k], list)
            and len(input_dict[k]) > 0
            and isinstance(input_dict[k][0], torch.Tensor)
        ):
            input_dict[k] = [ele.cuda(non_blocking=True) for ele in v]
    return input_dict


def create_placeholder_variables():
    import cv2

    try:
        placeholders_folder = Path(RESOURCES_FOLDER) / "placeholders"
        logging.info(f"placeholders_folder:{placeholders_folder}.")
        no_seg_out = cv2.imread(str(placeholders_folder / "no_seg_out.png"))[:, :, ::-1]
        error_happened = cv2.imread(str(placeholders_folder / "error_happened.png"))[:, :, ::-1]
    except Exception as e:
        logging.error(f"e:{e}.")
        logging.error(f"ROOT:{ROOT}.")
        no_seg_out = error_happened = np.zeros((100, 100, 3))
    return {
        "no_seg_out": no_seg_out,
        "error_happened": error_happened
    }