lisa-on-cuda / model /llava /mm_utils.py
X-Lai
Refactor the code to support hf model module format & support grefcoco dataset
e5c9ee0
raw
history blame
2.92 kB
import base64
from io import BytesIO
import torch
from PIL import Image
from transformers import StoppingCriteria
from .constants import IMAGE_TOKEN_INDEX
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def process_images(images, image_processor, model_cfg):
return image_processor(images, return_tensors="pt")["pixel_values"]
def tokenizer_image_token(
prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None
):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if (
len(prompt_chunks) > 0
and len(prompt_chunks[0]) > 0
and prompt_chunks[0][0] == tokenizer.bos_token_id
):
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == "pt":
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f"Unsupported tensor type: {return_tensors}")
return input_ids
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith("checkpoint-"):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if (
len(cur_keyword_ids) > 1
and cur_keyword_ids[0] == tokenizer.bos_token_id
):
cur_keyword_ids = cur_keyword_ids[1:]
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def __call__(
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
offset = min(output_ids.shape[1] - self.start_len, 3)
self.keyword_ids = [
keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids
]
for keyword_id in self.keyword_ids:
if output_ids[0, -keyword_id.shape[0] :] == keyword_id:
return True
outputs = self.tokenizer.batch_decode(
output_ids[:, -offset:], skip_special_tokens=True
)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False