File size: 15,604 Bytes
3d9fba4
 
5885496
 
 
3d9fba4
5885496
e5c9ee0
 
6144294
e5c9ee0
 
e629203
 
5885496
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5885496
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5885496
 
e5c9ee0
3d9fba4
 
e5c9ee0
 
3d9fba4
e5c9ee0
3d9fba4
e5c9ee0
 
 
 
 
3d9fba4
e5c9ee0
 
968fffb
e5c9ee0
3d9fba4
e5c9ee0
3d9fba4
 
e5c9ee0
3d9fba4
 
 
 
 
e5c9ee0
 
3d9fba4
 
 
 
 
 
 
e5c9ee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c899f8b
 
 
e5c9ee0
 
 
 
 
 
 
 
 
 
3d9fba4
 
 
e5c9ee0
 
 
 
 
 
 
 
 
3d9fba4
 
e5c9ee0
 
 
 
 
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
3d9fba4
 
968fffb
e5c9ee0
 
 
 
 
3d9fba4
 
 
 
 
 
 
 
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
 
 
 
 
e5c9ee0
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
 
 
 
3d9fba4
 
 
 
 
 
e5c9ee0
3d9fba4
e5c9ee0
3d9fba4
 
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1020dc
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
 
 
 
 
 
e5c9ee0
 
 
 
 
 
 
 
3d9fba4
 
 
e5c9ee0
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
 
 
 
3d9fba4
 
 
 
 
 
 
e5c9ee0
3d9fba4
e5c9ee0
3d9fba4
 
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from typing import List

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import BitsAndBytesConfig, CLIPVisionModel

from utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
                         DEFAULT_IMAGE_PATCH_TOKEN)

from .llava.model.language_model.llava_llama import (LlavaLlamaForCausalLM,
                                                     LlavaLlamaModel)
from .segment_anything import build_sam_vit_h


def dice_loss(
    inputs: torch.Tensor,
    targets: torch.Tensor,
    num_masks: float,
    scale=1000,  # 100000.0,
    eps=1e-6,
):
    """
    Compute the DICE loss, similar to generalized IOU for masks
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    """
    inputs = inputs.sigmoid()
    inputs = inputs.flatten(1, 2)
    targets = targets.flatten(1, 2)
    numerator = 2 * (inputs / scale * targets).sum(-1)
    denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1)
    loss = 1 - (numerator + eps) / (denominator + eps)
    loss = loss.sum() / (num_masks + 1e-8)
    return loss


def sigmoid_ce_loss(
    inputs: torch.Tensor,
    targets: torch.Tensor,
    num_masks: float,
):
    """
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    Returns:
        Loss tensor
    """
    loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
    loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8)
    return loss


class LisaMetaModel:
    def __init__(
        self,
        config,
        **kwargs,
    ):
        super(LisaMetaModel, self).__init__(config)

        self.config = config
        if not hasattr(self.config, "train_mask_decoder"):
            self.config.train_mask_decoder = kwargs["train_mask_decoder"]
            self.config.out_dim = kwargs["out_dim"]
            self.vision_pretrained = kwargs.get("vision_pretrained", None)
        else:
            self.vision_pretrained = kwargs.get("vision_pretrained", None)
            self.initialize_lisa_modules(self.config)

    def initialize_lisa_modules(self, config):
        # SAM
        self.visual_model = build_sam_vit_h(self.vision_pretrained)
        for param in self.visual_model.parameters():
            param.requires_grad = False
        if config.train_mask_decoder:
            self.visual_model.mask_decoder.train()
            for param in self.visual_model.mask_decoder.parameters():
                param.requires_grad = True

        # Projection layer
        in_dim = config.hidden_size
        out_dim = config.out_dim
        text_fc = [
            nn.Linear(in_dim, in_dim),
            nn.ReLU(inplace=True),
            nn.Linear(in_dim, out_dim),
            nn.Dropout(0.0),
        ]
        self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_fc)])
        self.text_hidden_fcs.train()
        for param in self.text_hidden_fcs.parameters():
            param.requires_grad = True


class LisaModel(LisaMetaModel, LlavaLlamaModel):
    def __init__(
        self,
        config,
        **kwargs,
    ):
        super(LisaModel, self).__init__(config, **kwargs)

        self.config.use_cache = False
        self.config.vision_tower = self.config.mm_vision_tower
        self.config.mm_vision_select_feature = "patch"
        self.config.image_aspect_ratio = "square"
        self.config.image_grid_pinpoints = None
        self.config.tune_mm_mlp_adapter = False
        self.config.freeze_mm_mlp_adapter = True
        self.config.pretrain_mm_mlp_adapter = None
        self.config.mm_use_im_patch_token = False


class LISAForCausalLM(LlavaLlamaForCausalLM):
    def __init__(
        self,
        config,
        **kwargs,
    ):
        if not hasattr(config, "train_mask_decoder"):
            config.mm_use_im_start_end = kwargs.pop("use_mm_start_end", True)
            config.mm_vision_tower = kwargs.get(
                "vision_tower", "openai/clip-vit-large-patch14"
            )
            self.ce_loss_weight = kwargs.pop("ce_loss_weight", None)
            self.dice_loss_weight = kwargs.pop("dice_loss_weight", None)
            self.bce_loss_weight = kwargs.pop("bce_loss_weight", None)
        else:
            config.mm_vision_tower = config.vision_tower
            
        self.seg_token_idx = kwargs.pop("seg_token_idx")

        super().__init__(config)

        self.model = LisaModel(config, **kwargs)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_visual_embs(self, pixel_values: torch.FloatTensor):
        with torch.no_grad():
            image_embeddings_list = []
            for i in range(pixel_values.shape[0]):
                torch.cuda.empty_cache()
                image_embeddings = self.model.visual_model.image_encoder(
                    pixel_values[i].unsqueeze(0)
                )
                image_embeddings_list.append(image_embeddings)
            torch.cuda.empty_cache()
            image_embeddings = torch.cat(image_embeddings_list, 0)
        return image_embeddings

    def forward(self, **kwargs):
        if "past_key_values" in kwargs:
            return super().forward(**kwargs)
        return self.model_forward(**kwargs)

    def model_forward(
        self,
        images: torch.FloatTensor,
        images_clip: torch.FloatTensor,
        input_ids: torch.LongTensor,
        labels: torch.LongTensor,
        attention_masks: torch.LongTensor,
        offset: torch.LongTensor,
        masks_list: List[torch.FloatTensor],
        label_list: List[torch.Tensor],
        resize_list: List[tuple],
        inference: bool = False,
        **kwargs,
    ):
        image_embeddings = self.get_visual_embs(images)
        batch_size = image_embeddings.shape[0]
        assert batch_size == len(offset) - 1

        seg_token_mask = input_ids[:, 1:] == self.seg_token_idx
        seg_token_mask = torch.cat(
            [
                seg_token_mask,
                torch.zeros((seg_token_mask.shape[0], 1)).bool().cuda(),
            ],
            dim=1,
        )
        # hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front)
        seg_token_mask = torch.cat(
            [torch.zeros((seg_token_mask.shape[0], 255)).bool().cuda(), seg_token_mask],
            dim=1,
        )

        if inference:
            n_batch = 1
            length = input_ids.shape[0]
            assert images_clip.shape[0] == 1
            images_clip_extend = images_clip.expand(length, -1, -1, -1).contiguous()

            output_hidden_states = []
            for i in range(n_batch):
                start_i, end_i = i * length, min((i + 1) * length, input_ids.shape[0])
                output_i = super().forward(
                    images=images_clip_extend[: end_i - start_i],
                    attention_mask=attention_masks[start_i:end_i],
                    input_ids=input_ids[start_i:end_i],
                    output_hidden_states=True,
                )
                output_hidden_states.append(output_i.hidden_states)
                torch.cuda.empty_cache()

            output_hidden_states_list = []
            output_hidden_states_level = torch.cat(output_hidden_states, dim=0)
            output_hidden_states_list.append(output_hidden_states_level)
            output_hidden_states = output_hidden_states_list
            output = None

        else:
            images_clip_list = []
            for i in range(len(offset) - 1):
                start_i, end_i = offset[i], offset[i + 1]
                images_clip_i = (
                    images_clip[i]
                    .unsqueeze(0)
                    .expand(end_i - start_i, -1, -1, -1)
                    .contiguous()
                )
                images_clip_list.append(images_clip_i)
            images_clip = torch.cat(images_clip_list, dim=0)

            output = super().forward(
                images=images_clip,
                attention_mask=attention_masks,
                input_ids=input_ids,
                labels=labels,
                output_hidden_states=True,
            )
            output_hidden_states = output.hidden_states

        hidden_states = []

        assert len(self.model.text_hidden_fcs) == 1
        hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states[-1]))

        last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
        pred_embeddings = last_hidden_state[seg_token_mask]
        seg_token_counts = seg_token_mask.int().sum(-1)  # [bs, ]

        seg_token_offset = seg_token_counts.cumsum(-1)
        seg_token_offset = torch.cat(
            [torch.zeros(1).long().cuda(), seg_token_offset], dim=0
        )

        seg_token_offset = seg_token_offset[offset]

        pred_embeddings_ = []
        for i in range(len(seg_token_offset) - 1):
            start_i, end_i = seg_token_offset[i], seg_token_offset[i + 1]
            pred_embeddings_.append(pred_embeddings[start_i:end_i])
        pred_embeddings = pred_embeddings_

        multimask_output = False
        pred_masks = []
        for i in range(len(pred_embeddings)):
            (
                sparse_embeddings,
                dense_embeddings,
            ) = self.model.visual_model.prompt_encoder(
                points=None,
                boxes=None,
                masks=None,
                text_embeds=pred_embeddings[i].unsqueeze(1),
            )
            sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
            low_res_masks, iou_predictions = self.model.visual_model.mask_decoder(
                image_embeddings=image_embeddings[i].unsqueeze(0),
                image_pe=self.model.visual_model.prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=multimask_output,
            )
            pred_mask = self.model.visual_model.postprocess_masks(
                low_res_masks,
                input_size=resize_list[i],
                original_size=label_list[i].shape,
            )
            pred_masks.append(pred_mask[:, 0])

        model_output = output
        gt_masks = masks_list

        if inference:
            return {
                "pred_masks": pred_masks,
                "gt_masks": gt_masks,
            }

        output = model_output.logits

        ce_loss = model_output.loss
        ce_loss = ce_loss * self.ce_loss_weight
        mask_bce_loss = 0
        mask_dice_loss = 0
        num_masks = 0
        for batch_idx in range(len(pred_masks)):
            gt_mask = gt_masks[batch_idx]
            pred_mask = pred_masks[batch_idx]

            assert (
                gt_mask.shape[0] == pred_mask.shape[0]
            ), "gt_mask.shape: {}, pred_mask.shape: {}".format(
                gt_mask.shape, pred_mask.shape
            )
            mask_bce_loss += (
                sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
                * gt_mask.shape[0]
            )
            mask_dice_loss += (
                dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
                * gt_mask.shape[0]
            )
            num_masks += gt_mask.shape[0]

        mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8)
        mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8)
        mask_loss = mask_bce_loss + mask_dice_loss

        loss = ce_loss + mask_loss

        return {
            "loss": loss,
            "ce_loss": ce_loss,
            "mask_bce_loss": mask_bce_loss,
            "mask_dice_loss": mask_dice_loss,
            "mask_loss": mask_loss,
        }

    def evaluate(
        self,
        images_clip,
        images,
        input_ids,
        resize_list,
        original_size_list,
        max_new_tokens=32,
        tokenizer=None,
    ):
        with torch.no_grad():
            outputs = self.generate(
                images=images_clip,
                input_ids=input_ids,
                max_new_tokens=max_new_tokens,
                num_beams=1,
                output_hidden_states=True,
                return_dict_in_generate=True,
            )
            output_hidden_states = outputs.hidden_states[-1]
            output_ids = outputs.sequences

            seg_token_mask = output_ids[:, 1:] == self.seg_token_idx
            # hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front)
            seg_token_mask = torch.cat(
                [
                    torch.zeros((seg_token_mask.shape[0], 255)).bool().cuda(),
                    seg_token_mask,
                ],
                dim=1,
            )

            hidden_states = []

            assert len(self.model.text_hidden_fcs) == 1
            hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states))

            last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
            pred_embeddings = last_hidden_state[seg_token_mask]

            seg_token_counts = seg_token_mask.int().sum(-1)  # [bs, ]
            seg_token_offset = seg_token_counts.cumsum(-1)
            seg_token_offset = torch.cat(
                [torch.zeros(1).long().cuda(), seg_token_offset], dim=0
            )

            pred_embeddings_ = []
            for i in range(len(seg_token_offset) - 1):
                start_i, end_i = seg_token_offset[i], seg_token_offset[i + 1]
                pred_embeddings_.append(pred_embeddings[start_i:end_i])
            pred_embeddings = pred_embeddings_

            image_embeddings = self.get_visual_embs(images)

            multimask_output = False
            pred_masks = []
            for i in range(len(pred_embeddings)):
                (
                    sparse_embeddings,
                    dense_embeddings,
                ) = self.model.visual_model.prompt_encoder(
                    points=None,
                    boxes=None,
                    masks=None,
                    text_embeds=pred_embeddings[i].unsqueeze(1),
                )

                sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
                low_res_masks, iou_predictions = self.model.visual_model.mask_decoder(
                    image_embeddings=image_embeddings[i].unsqueeze(0),
                    image_pe=self.model.visual_model.prompt_encoder.get_dense_pe(),
                    sparse_prompt_embeddings=sparse_embeddings,
                    dense_prompt_embeddings=dense_embeddings,
                    multimask_output=multimask_output,
                )
                pred_mask = self.model.visual_model.postprocess_masks(
                    low_res_masks,
                    input_size=resize_list[i],
                    original_size=original_size_list[i],
                )
                pred_masks.append(pred_mask[:, 0])

        return output_ids, pred_masks