File size: 9,045 Bytes
5885496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import torch
import os
import json
from tqdm import tqdm
import shortuuid

from llava import LlavaLlamaForCausalLM
from llava.conversation import conv_templates
from llava.utils import disable_torch_init
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria

from PIL import Image
import random
import math


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"


def patch_config(config):
    patch_dict = {
        "use_mm_proj": True,
        "mm_vision_tower": "openai/clip-vit-large-patch14",
        "mm_hidden_size": 1024
    }

    cfg = AutoConfig.from_pretrained(config)
    if not hasattr(cfg, "mm_vision_tower"):
        print(f'`mm_vision_tower` not found in `{config}`, applying patch and save to disk.')
        for k, v in patch_dict.items():
            setattr(cfg, k, v)
        cfg.save_pretrained(config)


def eval_model(args):
    # Model
    disable_torch_init()
    model_name = os.path.expanduser(args.model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    if args.mm_projector is None:
        patch_config(model_name)
        model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).cuda()
        image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)

        mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)

        vision_tower = model.model.vision_tower[0]
        vision_tower.to(device='cuda', dtype=torch.float16)
        vision_config = vision_tower.config
        vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
        vision_config.use_im_start_end = mm_use_im_start_end
        if mm_use_im_start_end:
            vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
        image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
    else:
        # in case of using a pretrained model with only a MLP projector weights
        model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).cuda()

        vision_tower = CLIPVisionModel.from_pretrained(args.vision_tower, torch_dtype=torch.float16).cuda()
        image_processor = CLIPImageProcessor.from_pretrained(args.vision_tower, torch_dtype=torch.float16)

        mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)

        vision_config = vision_tower.config
        vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
        vision_config.use_im_start_end = mm_use_im_start_end
        if mm_use_im_start_end:
            vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])

        image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2

        mm_projector = torch.nn.Linear(vision_config.hidden_size, model.config.hidden_size)
        mm_projector_weights = torch.load(args.mm_projector, map_location='cpu')
        mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})

        model.model.mm_projector = mm_projector.cuda().half()
        model.model.vision_tower = [vision_tower]

    questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")
    for i, line in enumerate(tqdm(questions)):
        idx = line["question_id"]
        image_file = line["image"]
        qs = line["text"]
        cur_prompt = qs
        if mm_use_im_start_end:
            qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
        else:
            qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len

        if args.conv_mode == 'simple_legacy':
            qs += '\n\n### Response:'
        # conv = default_conversation.copy()
        conv = conv_templates[args.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        prompt = conv.get_prompt()
        inputs = tokenizer([prompt])

        image = Image.open(os.path.join(args.image_folder, image_file))
        # image.save(os.path.join(save_image_folder, image_file))
        image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]

        input_ids = torch.as_tensor(inputs.input_ids).cuda()

        # new stopping implementation
        class KeywordsStoppingCriteria(StoppingCriteria):
            def __init__(self, keywords, tokenizer, input_ids):
                self.keywords = keywords
                self.tokenizer = tokenizer
                self.start_len = None
                self.input_ids = input_ids

            def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                if self.start_len is None:
                    self.start_len = self.input_ids.shape[1]
                else:
                    outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
                    for keyword in self.keywords:
                        if keyword in outputs:
                            return True
                return False

        keywords = ['###']
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=image_tensor.unsqueeze(0).half().cuda(),
                do_sample=True,
                temperature=0.7,
                max_new_tokens=1024,
                stopping_criteria=[stopping_criteria])

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f'[Warning] Sample {i}: {n_diff_input_output} output_ids are not the same as the input_ids')
        outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]

        if args.conv_mode == 'simple_legacy' or args.conv_mode == 'simple':
            while True:
                cur_len = len(outputs)
                outputs = outputs.strip()
                for pattern in ['###', 'Assistant:', 'Response:']:
                    if outputs.startswith(pattern):
                        outputs = outputs[len(pattern):].strip()
                if len(outputs) == cur_len:
                    break

        try:
            index = outputs.index(conv.sep)
        except ValueError:
            outputs += conv.sep
            index = outputs.index(conv.sep)

        outputs = outputs[:index].strip()

        ans_id = shortuuid.uuid()
        ans_file.write(json.dumps({"question_id": idx,
                                   "prompt": cur_prompt,
                                   "text": outputs,
                                   "answer_id": ans_id,
                                   "model_id": model_name,
                                   "metadata": {}}) + "\n")
        ans_file.flush()
    ans_file.close()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
    parser.add_argument("--image-folder", type=str, default="")
    parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
    parser.add_argument("--answers-file", type=str, default="answer.jsonl")
    parser.add_argument("--mm-projector", type=str, default=None)
    parser.add_argument("--vision-tower", type=str, default=None)
    parser.add_argument("--conv-mode", type=str, default="simple")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    args = parser.parse_args()

    eval_model(args)