alekeik1 commited on
Commit
39cd2c1
1 Parent(s): 585ddc0

feat(main): split into files

Browse files
shad_mlops_transformers/main.py CHANGED
@@ -1,8 +1,15 @@
1
  import streamlit as st
 
 
 
 
 
2
 
3
  st.markdown("### Hello there")
4
  st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
5
 
6
  text = st.text_area("TEXT HERE")
7
 
8
- st.markdown("hey you")
 
 
 
1
  import streamlit as st
2
+ from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline
3
+
4
+ tokenizer = AutoTokenizer.from_pretrained("Davlan/distilbert-base-multilingual-cased-ner-hrl")
5
+ model = AutoModelForTokenClassification.from_pretrained("Davlan/distilbert-base-multilingual-cased-ner-hrl")
6
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
7
 
8
  st.markdown("### Hello there")
9
  st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
10
 
11
  text = st.text_area("TEXT HERE")
12
 
13
+ raw_predictions = nlp("is this real?")
14
+
15
+ st.markdown(f"{raw_predictions}")
shad_mlops_transformers/model.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline
2
+
3
+ tokenizer = AutoTokenizer.from_pretrained("Davlan/distilbert-base-multilingual-cased-ner-hrl")
4
+ model = AutoModelForTokenClassification.from_pretrained("Davlan/distilbert-base-multilingual-cased-ner-hrl")
5
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
6
+ example = "Nader Jokhadar had given Syria the lead with a well-struck header in the seventh minute."
7
+ ner_results = nlp(example)
8
+ print(ner_results)
shad_mlops_transformers/ui.py ADDED
File without changes