Spaces:
Sleeping
Sleeping
File size: 7,503 Bytes
9e4713f 743cb9b 9e4713f 743cb9b 9e4713f 03dd850 9e4713f 743cb9b 9e4713f 743cb9b 9e4713f 743cb9b 9e4713f 743cb9b 9e4713f 743cb9b 9e4713f 743cb9b 9e4713f 743cb9b 9e4713f 743cb9b 9e4713f 743cb9b 9e4713f 743cb9b 9e4713f 743cb9b 9e4713f 743cb9b 9e4713f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import json
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from loguru import logger
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from shad_mlops_transformers.config import config
from shad_mlops_transformers.model import DocumentClassifier
class ArxivDataset(Dataset):
def __init__(self, raw_data: list[dict], class_mapper: dict[str, int] | None = None):
"""Разово вычитываем и сохраняем весь датасет."""
logger.info("reading data")
self.x = []
self.y = []
# self.data = []
whitelist_labels = ["math", "cs", "stat"]
i = 0
if class_mapper is None:
self.class_mapper = {}
else:
self.class_mapper = class_mapper
for item in raw_data:
tmp_y = []
# да простят мне это потомки, но там зачем-то люди засунули питоновский dict в строку!
for tag_desc in eval(item["tag"].replace("'", '"')):
real_tag: str = tag_desc["term"]
# пока берем только теги из whitelist
if not any([real_tag.startswith(x) for x in whitelist_labels]):
continue
if class_mapper is None and real_tag not in self.class_mapper:
self.class_mapper[real_tag] = i
i += 1
tmp_y.append(self.class_mapper[real_tag])
# берем только один тег
break
# если был хотя бы один валидный тег, добавляем в датасет
if len(tmp_y):
# NOTE берем только один тег
# self.data.append({"label": tmp_y[0], "text": item["summary"]})
self.x.append(item["summary"])
self.y.append(tmp_y[0])
self.classes = sorted(list(self.class_mapper.keys()))
logger.info("[Done] reading data")
def __getitem__(self, i):
# return self.data[i]
return self.x[i], self.y[i]
def __len__(self):
# return len(self.data)
return len(self.x)
def make_train_val():
with open(config.raw_data_dir / "arxivData.json", "r") as f:
_raw_json = json.load(f)
return train_test_split(_raw_json, test_size=config.test_size, shuffle=True, random_state=config.random_seed)
def run_epoch(model: DocumentClassifier, optimizer: torch.optim.Optimizer, loader: DataLoader, criterion, device):
model.to(device)
model.train()
losses_tr = []
for text, true_label in tqdm(loader):
true_label = true_label.to(device)
optimizer.zero_grad()
pred = model(text)
loss = criterion(pred, true_label)
loss.backward()
optimizer.step()
current_loss = loss.item()
# logger.debug(f"current loss: {current_loss}")
losses_tr.append(current_loss)
# break
return model, optimizer, np.mean(losses_tr)
def val(model, loader, criterion, target_p: float = 0.95, device: torch.device = torch.device("cpu")):
model.eval()
losses_val = []
with torch.no_grad():
for text, true_label in tqdm(loader):
true_label = true_label.to(device)
pred = model(text)
loss = criterion(pred, true_label)
losses_val.append(loss.item())
# break
return np.mean(losses_val), None
def train_loop(
model: DocumentClassifier,
optimizer: torch.optim.Optimizer,
train_loader: DataLoader,
val_loader: DataLoader,
criterion,
scheduler: torch.optim.lr_scheduler.ReduceLROnPlateau,
device,
val_every: int = 1,
):
losses = {"train": [], "val": []}
best_val_loss = np.Inf
metrics = {}
for epoch in range(1, config.epochs + 1):
logger.info(f"#{epoch}/{config.epochs}:")
model, optimizer, loss = run_epoch(
model=model, optimizer=optimizer, loader=train_loader, criterion=criterion, device=device
)
losses["train"].append(loss)
if not (epoch % val_every):
loss, metrics_ = val(model, val_loader, criterion, device=device)
losses["val"].append(loss)
if metrics_ is not None:
for name, value in metrics_.items():
metrics[name].append(value)
# Сохраняем лучшую по валидации модель
if loss < best_val_loss:
config.checkpoints_folders.mkdir(parents=True, exist_ok=True)
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict(),
"losses": losses,
},
config.checkpoints_folders / f"epoch_{epoch}.pt",
)
best_val_loss = loss
scheduler.step(loss)
fig, ax = plt.subplots(1, 1, figsize=(16, 9))
ax.plot(losses["train"], "r.-", label="train")
ax.plot(losses["val"], "g.-", label="val")
ax.grid(True)
ax.legend()
config.plots_dir.mkdir(exist_ok=True, parents=True)
fig.savefig(config.plots_dir / "train.png")
def collator(x):
return x[0]
def save_model(model: DocumentClassifier):
config.weights_path.parent.mkdir(parents=True, exist_ok=True)
torch.save(model.state_dict(), config.weights_path)
def load_mapper():
path = (config.raw_data_dir / "mapper.json").absolute()
logger.info(f"opening mapper in path: {path}")
with open(path, "r") as f:
return json.load(f)
def main():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"using device {device}")
train, val = make_train_val()
dataset_full = ArxivDataset(train + val) # только для вычисления маппинга
cm = dataset_full.class_mapper
logger.info("writing global class mapper to json")
with open(config.raw_data_dir / "mapper.json", "w") as f:
json.dump(cm, f)
logger.info("[Done] writing global class mapper to json")
del dataset_full
dataset_train = ArxivDataset(train, class_mapper=cm)
dataset_val = ArxivDataset(val, class_mapper=cm)
loader_train = DataLoader(dataset_train, batch_size=config.batch_size, shuffle=True, drop_last=True)
loader_val = DataLoader(dataset_val, batch_size=config.batch_size, shuffle=True, drop_last=True)
model = DocumentClassifier(n_classes=len(dataset_train.classes), device=device)
optimizer = torch.optim.Adam(model.trainable_params)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode="min", factor=0.25, patience=4, threshold=0.001, verbose=True
)
loss = nn.CrossEntropyLoss()
logger.info("running train loop")
train_loop(
model=model,
optimizer=optimizer,
train_loader=loader_train,
val_loader=loader_val,
criterion=loss,
scheduler=scheduler,
device=device,
val_every=1,
)
save_model(model)
if __name__ == "__main__":
main()
|