Commit
·
1822f54
1
Parent(s):
fb3abe1
Added Semantic Textual Similarity
Browse files- app.py +89 -44
- mining.py +46 -0
- requirements.txt +1 -0
- sts.py +56 -0
- utils.py +25 -0
app.py
CHANGED
@@ -1,61 +1,106 @@
|
|
1 |
-
|
|
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
|
5 |
-
from
|
6 |
-
from sentence_transformers import SentenceTransformer
|
7 |
-
from sentence_transformers.util import paraphrase_mining
|
8 |
-
import torch
|
9 |
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
data = Dataset.from_pandas(pd.read_csv(path, on_bad_lines='skip', names=["text"]))
|
19 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2",
|
21 |
-
backend="openvino",
|
22 |
-
device=device,
|
23 |
-
trust_remote_code=True)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
49 |
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
demo.launch()
|
|
|
1 |
+
import multiprocessing
|
2 |
+
import threading
|
3 |
import gradio as gr
|
4 |
+
from mining import mining
|
5 |
+
from sts import sts
|
6 |
+
from utils import getDataFrame, save_to_csv, delete_folder_periodically
|
|
|
|
|
|
|
7 |
|
8 |
+
CONCURRENCY_LIMIT = 5
|
9 |
|
10 |
+
with gr.Blocks() as demo:
|
11 |
+
with gr.Tab("Paraphrase Mining"):
|
12 |
+
with gr.Row():
|
13 |
+
gr.Markdown(
|
14 |
+
"### Paraphrase mining is the task of finding paraphrases (texts with identical / similar meaning) in a large corpus of sentences")
|
15 |
+
with gr.Row():
|
16 |
+
with gr.Column():
|
17 |
+
gr.Markdown("#### sentences")
|
18 |
|
19 |
+
upload_button_sentences = gr.UploadButton(label="upload sentences csv", file_types=['.csv'],
|
20 |
+
file_count="single")
|
21 |
+
output_data_sentences = gr.Dataframe(headers=["text"], col_count=1, label="sentences data")
|
22 |
|
23 |
+
upload_button_sentences.upload(fn=getDataFrame, inputs=upload_button_sentences,
|
24 |
+
outputs=output_data_sentences, concurrency_limit=CONCURRENCY_LIMIT)
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
with gr.Row():
|
27 |
+
with gr.Column():
|
28 |
+
submit_button_mining = gr.Button("Submit", variant="primary")
|
29 |
+
with gr.Row():
|
30 |
+
with gr.Column():
|
31 |
+
output_mining = gr.Dataframe(headers=["score", "sentence_1", "sentence_2"], type="polars",
|
32 |
+
label="Mining")
|
|
|
33 |
|
34 |
+
submit_button_mining.click(
|
35 |
+
fn=mining,
|
36 |
+
inputs=upload_button_sentences,
|
37 |
+
outputs=output_mining
|
38 |
+
)
|
39 |
|
40 |
+
download_button = gr.Button("Download Results as CSV", variant="huggingface")
|
41 |
+
download_file = gr.File(label="Downloadable File")
|
42 |
|
43 |
+
download_button.click(
|
44 |
+
fn=save_to_csv,
|
45 |
+
inputs=output_mining,
|
46 |
+
outputs=download_file
|
47 |
+
)
|
48 |
|
49 |
+
with gr.Tab("Semantic Textual Similarity"):
|
50 |
+
with gr.Row(): # Row for the title
|
51 |
+
gr.Markdown(
|
52 |
+
"### Semantic Textual Similarity (STS), we want to produce embeddings for all texts involved and calculate the similarities between them")
|
53 |
+
with gr.Row(): # First row of two columns
|
54 |
+
with gr.Column():
|
55 |
+
gr.Markdown("#### sentences 1")
|
56 |
+
upload_button_sentences1 = gr.UploadButton(label="upload sentences 1 csv", file_types=['.csv'],
|
57 |
+
file_count="single")
|
58 |
+
output_data_sentences1 = gr.Dataframe(headers=["text"], col_count=1, label="sentences 1 data")
|
59 |
|
60 |
+
upload_button_sentences1.upload(fn=getDataFrame, inputs=upload_button_sentences1,
|
61 |
+
outputs=output_data_sentences1, concurrency_limit=CONCURRENCY_LIMIT)
|
62 |
|
63 |
+
with gr.Column():
|
64 |
+
gr.Markdown("#### sentences 2")
|
65 |
+
upload_button_sentences2 = gr.UploadButton(label="upload sentences 2 csv", file_types=['.csv'],
|
66 |
+
file_count="single")
|
67 |
+
output_data_sentences2 = gr.Dataframe(headers=["text"], col_count=1, label="sentences 2 data")
|
68 |
|
69 |
+
upload_button_sentences2.upload(fn=getDataFrame, inputs=upload_button_sentences2,
|
70 |
+
outputs=output_data_sentences2, concurrency_limit=CONCURRENCY_LIMIT)
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column():
|
74 |
+
submit_button_sts = gr.Button("Submit", variant="primary")
|
75 |
+
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column():
|
78 |
+
gr.Markdown("#### STS Results")
|
79 |
+
|
80 |
+
output_sts = gr.Dataframe(headers=["score", "sentence_1", "sentence_2"], type="polars",
|
81 |
+
label="Semantic Textual Similarit")
|
82 |
|
83 |
+
submit_button_sts.click(
|
84 |
+
fn=sts,
|
85 |
+
inputs=[upload_button_sentences1, upload_button_sentences2],
|
86 |
+
outputs=output_sts
|
87 |
+
)
|
88 |
+
|
89 |
+
download_button = gr.Button("Download Results as CSV", variant="huggingface")
|
90 |
+
download_file = gr.File(label="Downloadable File")
|
91 |
+
|
92 |
+
download_button.click(
|
93 |
+
fn=save_to_csv,
|
94 |
+
inputs=output_sts,
|
95 |
+
outputs=download_file
|
96 |
+
)
|
97 |
|
98 |
if __name__ == "__main__":
|
99 |
+
multiprocessing.set_start_method("spawn")
|
100 |
+
|
101 |
+
folder_path = "data"
|
102 |
+
thread = threading.Thread(target=delete_folder_periodically, args=(folder_path, 1800), daemon=True)
|
103 |
+
thread.start()
|
104 |
+
|
105 |
+
print(gr.__version__)
|
106 |
demo.launch()
|
mining.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import pandas as pd
|
3 |
+
import polars as pl
|
4 |
+
import torch
|
5 |
+
from datasets import Dataset
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from sentence_transformers.util import paraphrase_mining
|
8 |
+
|
9 |
+
def mining(path):
|
10 |
+
st = time.time()
|
11 |
+
data = Dataset.from_pandas(pd.read_csv(path, on_bad_lines='skip', header=0, names=["text"]))
|
12 |
+
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
model = SentenceTransformer(
|
15 |
+
"sentence-transformers/all-MiniLM-L6-v2",
|
16 |
+
backend="openvino",
|
17 |
+
model_kwargs={"file_name": "openvino/openvino_model.xml"},
|
18 |
+
device=device,
|
19 |
+
trust_remote_code=True,
|
20 |
+
)
|
21 |
+
|
22 |
+
paraphrases = paraphrase_mining(
|
23 |
+
model,
|
24 |
+
data["text"],
|
25 |
+
corpus_chunk_size=len(data),
|
26 |
+
show_progress_bar=True,
|
27 |
+
batch_size=1024,
|
28 |
+
max_pairs=len(data) ** 2,
|
29 |
+
)
|
30 |
+
|
31 |
+
df_pd = pd.DataFrame(paraphrases)
|
32 |
+
df = pl.from_pandas(df_pd)
|
33 |
+
df = df.rename({"0": "score", "1": "sentence_1", "2": "sentence_2"})
|
34 |
+
|
35 |
+
union_df = pl.DataFrame(data.to_pandas())
|
36 |
+
|
37 |
+
df = df.with_columns([
|
38 |
+
pl.col("score").round(3).cast(pl.Float32),
|
39 |
+
union_df.select(pl.col("text")).to_series()[df["sentence_1"].cast(pl.Int32)].alias("sentence_1"),
|
40 |
+
union_df.select(pl.col("text")).to_series()[df["sentence_2"].cast(pl.Int32)].alias("sentence_2"),
|
41 |
+
]).filter(pl.col("score") > 0.96).sort(["score"], descending=True)
|
42 |
+
|
43 |
+
elapsed_time = time.time() - st
|
44 |
+
print('Execution time:', time.strftime("%H:%M:%S", time.gmtime(elapsed_time)))
|
45 |
+
|
46 |
+
return df
|
requirements.txt
CHANGED
@@ -4,3 +4,4 @@ pandas
|
|
4 |
polars
|
5 |
datasets
|
6 |
sentence-transformers[openvino,onnx-gpu,onnx]
|
|
|
|
4 |
polars
|
5 |
datasets
|
6 |
sentence-transformers[openvino,onnx-gpu,onnx]
|
7 |
+
gradio
|
sts.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import pandas as pd
|
3 |
+
import polars as pl
|
4 |
+
import torch
|
5 |
+
from datasets import Dataset
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
|
8 |
+
def sts(data1, data2):
|
9 |
+
st = time.time()
|
10 |
+
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
model = SentenceTransformer(
|
13 |
+
"sentence-transformers/all-MiniLM-L6-v2",
|
14 |
+
backend="openvino",
|
15 |
+
model_kwargs={"file_name": "openvino/openvino_model.xml"},
|
16 |
+
device=device,
|
17 |
+
trust_remote_code=True,
|
18 |
+
)
|
19 |
+
|
20 |
+
sentences1 = Dataset.from_pandas(pd.read_csv(data1, on_bad_lines='skip', header=0, names=["text"]))
|
21 |
+
sentences2 = Dataset.from_pandas(pd.read_csv(data2, on_bad_lines='skip', header=0, names=["text"]))
|
22 |
+
|
23 |
+
embeddings1 = model.encode(sentences1["text"], normalize_embeddings=True, batch_size=1024,
|
24 |
+
show_progress_bar=True)
|
25 |
+
embeddings2 = model.encode(sentences2["text"], normalize_embeddings=True, batch_size=1024,
|
26 |
+
show_progress_bar=True)
|
27 |
+
|
28 |
+
similarity_matrix = model.similarity(embeddings1, embeddings2)
|
29 |
+
|
30 |
+
df_pd = pd.DataFrame(similarity_matrix)
|
31 |
+
dfi = df_pd.__dataframe__()
|
32 |
+
df = pl.from_dataframe(dfi)
|
33 |
+
|
34 |
+
df_matrix_with_index = df.with_row_index(name="row_index").with_columns(pl.col("row_index").cast(pl.UInt64))
|
35 |
+
df_long = df_matrix_with_index.unpivot(index="row_index", variable_name="column_index",
|
36 |
+
value_name="score").with_columns(pl.col("column_index").cast(pl.UInt64))
|
37 |
+
df_sentences1 = pl.DataFrame(sentences1.to_pandas()).with_row_index(name="row_index").with_columns(
|
38 |
+
pl.col("row_index").cast(pl.UInt64))
|
39 |
+
df_sentences2 = pl.DataFrame(sentences2.to_pandas()).with_row_index(name="column_index").with_columns(
|
40 |
+
pl.col("column_index").cast(pl.UInt64))
|
41 |
+
|
42 |
+
df_long = (df_long
|
43 |
+
.with_columns([pl.col("score").round(4).cast(pl.Float32)]) # Ensure column_index is UInt32
|
44 |
+
.join(df_sentences1, on="row_index")
|
45 |
+
.join(df_sentences2, on="column_index"))
|
46 |
+
|
47 |
+
df_long = df_long.rename({
|
48 |
+
"text": "setences1",
|
49 |
+
"text_right": "sentences2",
|
50 |
+
})
|
51 |
+
|
52 |
+
elapsed_time = time.time() - st
|
53 |
+
print('Execution time:', time.strftime("%H:%M:%S", time.gmtime(elapsed_time)))
|
54 |
+
|
55 |
+
return df_long.select(["score", "setences1", "sentences2"]).filter(pl.col("score") > 0.96).sort(["score"],
|
56 |
+
descending=True)
|
utils.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import uuid
|
3 |
+
import shutil
|
4 |
+
import pandas as pd
|
5 |
+
import polars as pl
|
6 |
+
import time
|
7 |
+
|
8 |
+
def getDataFrame(path):
|
9 |
+
data = pd.read_csv(path, on_bad_lines='skip', header=0, names=["text"])
|
10 |
+
return pl.from_pandas(data)
|
11 |
+
|
12 |
+
def save_to_csv(dataframe):
|
13 |
+
folder_path = "data"
|
14 |
+
if not dataframe.is_empty():
|
15 |
+
os.makedirs(folder_path, exist_ok=True)
|
16 |
+
csv_path = f"{folder_path}/{uuid.uuid4()}.csv"
|
17 |
+
dataframe.write_csv(csv_path, separator="\t")
|
18 |
+
return csv_path
|
19 |
+
|
20 |
+
def delete_folder_periodically(path, interval=3600):
|
21 |
+
while True:
|
22 |
+
if os.path.exists(path):
|
23 |
+
shutil.rmtree(path)
|
24 |
+
os.makedirs(path, exist_ok=True)
|
25 |
+
time.sleep(interval)
|