alaamostafa commited on
Commit
f29d93e
·
verified ·
1 Parent(s): f1c9a13

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -21
app.py CHANGED
@@ -1,23 +1,28 @@
1
  import gradio as gr
2
  import torch
3
 
4
- # This is a simplified version showing just the UI structure
5
- # You'll need to integrate your actual model loading and generation code
6
-
7
  def generate_text(prompt, max_length, temperature, top_p, top_k, repetition_penalty):
8
- # Your text generation function would go here
9
- # This is just a placeholder that returns the prompt as a demonstration
10
- return f"Generated text based on: {prompt}"
 
 
 
 
 
 
 
 
11
 
12
- # Create the interface with a layout matching image 2
13
  with gr.Blocks() as demo:
14
  with gr.Row():
15
  # Left column - Input
16
  with gr.Column():
17
  prompt = gr.Textbox(
18
- label="Enter your prompt",
19
- placeholder="Type your prompt here...",
20
- lines=5
21
  )
22
 
23
  with gr.Row():
@@ -26,34 +31,34 @@ with gr.Blocks() as demo:
26
 
27
  with gr.Accordion("Advanced Options", open=False):
28
  max_length = gr.Slider(
29
- label="Maximum Length",
30
  minimum=64, maximum=1024, value=512, step=64
31
  )
32
 
33
  temperature = gr.Slider(
34
- label="Temperature (0 = deterministic, 0.7 = creative, 1.5 = random)",
35
  minimum=0, maximum=1.5, value=0.7, step=0.1
36
  )
37
 
38
  top_p = gr.Slider(
39
- label="Top-p (nucleus sampling)",
40
  minimum=0.1, maximum=1.0, value=0.9, step=0.1
41
  )
42
 
43
  top_k = gr.Slider(
44
- label="Top-k",
45
  minimum=1, maximum=100, value=40, step=1
46
  )
47
 
48
  repetition_penalty = gr.Slider(
49
- label="Repetition Penalty",
50
  minimum=1.0, maximum=2.0, value=1.1, step=0.1
51
  )
52
 
53
  # Right column - Output
54
  with gr.Column():
55
  output = gr.Textbox(
56
- label="Generated Text",
57
  lines=20
58
  )
59
 
@@ -65,21 +70,22 @@ with gr.Blocks() as demo:
65
  "What are the key differences between neurons and glial cells?"
66
  ]
67
 
 
68
  gr.Examples(
69
  examples=example_prompts,
70
  inputs=prompt
71
  )
72
 
73
- # Set up event handlers
74
  generate_btn.click(
75
- fn=generate_text,
76
- inputs=[prompt, max_length, temperature, top_p, top_k, repetition_penalty],
77
  outputs=output
78
  )
79
 
80
  clear_btn.click(
81
- fn=lambda: ("", ""),
82
- inputs=None,
83
  outputs=[prompt, output]
84
  )
85
 
 
1
  import gradio as gr
2
  import torch
3
 
 
 
 
4
  def generate_text(prompt, max_length, temperature, top_p, top_k, repetition_penalty):
5
+ # This is a placeholder function
6
+ # In a real implementation, you would:
7
+ # 1. Preprocess the input prompt
8
+ # 2. Load your ML model
9
+ # 3. Generate text using the specified parameters
10
+ # For now, we'll just return a simple generated text
11
+
12
+ if not prompt:
13
+ return "Please enter a prompt."
14
+
15
+ return f"Another important factor in promoting healthy aging is social interaction. Social isolation and loneliness have been linked to an increased risk of cognitive decline and dementia. Maintaining strong social connections with family, friends, and community members can help to keep the brain active and engaged.\n\nIn addition to these lifestyle factors, there are also medical interventions that can help to promote healthy aging. For example, certain medications can help to slow down the progression of Alzheimer's disease and other forms of dementia. Other treatments, such as cognitive training programs and brain stimulation therapies, may also be effective in improving cognitive function in older adults.\n\nDespite these promising developments, there is still much work to be done in understanding the"
16
 
17
+ # Create the Gradio interface
18
  with gr.Blocks() as demo:
19
  with gr.Row():
20
  # Left column - Input
21
  with gr.Column():
22
  prompt = gr.Textbox(
23
+ label="Enter your prompt",
24
+ placeholder="Recent advances in neuroimaging suggest that",
25
+ lines=3
26
  )
27
 
28
  with gr.Row():
 
31
 
32
  with gr.Accordion("Advanced Options", open=False):
33
  max_length = gr.Slider(
34
+ label="Maximum Length",
35
  minimum=64, maximum=1024, value=512, step=64
36
  )
37
 
38
  temperature = gr.Slider(
39
+ label="Temperature (0 = deterministic, 0.7 = creative, 1.5 = random)",
40
  minimum=0, maximum=1.5, value=0.7, step=0.1
41
  )
42
 
43
  top_p = gr.Slider(
44
+ label="Top-p (nucleus sampling)",
45
  minimum=0.1, maximum=1.0, value=0.9, step=0.1
46
  )
47
 
48
  top_k = gr.Slider(
49
+ label="Top-k",
50
  minimum=1, maximum=100, value=40, step=1
51
  )
52
 
53
  repetition_penalty = gr.Slider(
54
+ label="Repetition Penalty",
55
  minimum=1.0, maximum=2.0, value=1.1, step=0.1
56
  )
57
 
58
  # Right column - Output
59
  with gr.Column():
60
  output = gr.Textbox(
61
+ label="Generated Text",
62
  lines=20
63
  )
64
 
 
70
  "What are the key differences between neurons and glial cells?"
71
  ]
72
 
73
+ # Add examples
74
  gr.Examples(
75
  examples=example_prompts,
76
  inputs=prompt
77
  )
78
 
79
+ # Event handlers
80
  generate_btn.click(
81
+ fn=generate_text,
82
+ inputs=[prompt, max_length, temperature, top_p, top_k, repetition_penalty],
83
  outputs=output
84
  )
85
 
86
  clear_btn.click(
87
+ fn=lambda: None,
88
+ inputs=None,
89
  outputs=[prompt, output]
90
  )
91