Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
-
from unsloth import FastLanguageModel
|
3 |
import torch
|
4 |
|
5 |
-
#
|
6 |
-
model
|
7 |
-
model_name="alaamostafa/Mistral-7B-Unsloth",
|
8 |
-
max_seq_length=2048,
|
9 |
-
load_in_4bit=True,
|
10 |
-
)
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
from unsloth.chat_templates import get_chat_template
|
17 |
-
tokenizer = get_chat_template(
|
18 |
-
tokenizer,
|
19 |
-
chat_template="chatml",
|
20 |
-
mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"},
|
21 |
-
map_eos_token=True,
|
22 |
-
)
|
23 |
-
|
24 |
-
# Neuroscience example prompts
|
25 |
-
example_prompts = [
|
26 |
-
"Recent advances in neuroimaging suggest that",
|
27 |
-
"The role of dopamine in learning and memory involves",
|
28 |
-
"Explain the concept of neuroplasticity in simple terms",
|
29 |
-
"What are the key differences between neurons and glial cells?"
|
30 |
-
]
|
31 |
-
|
32 |
-
# Text generation function with parameters
|
33 |
-
def generate_text(prompt, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
|
34 |
-
# Prepare input
|
35 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
-
|
37 |
-
# Generate response
|
38 |
-
outputs = model.generate(
|
39 |
-
input_ids=inputs["input_ids"],
|
40 |
-
max_new_tokens=int(max_new_tokens),
|
41 |
-
temperature=float(temperature),
|
42 |
-
top_p=float(top_p),
|
43 |
-
top_k=int(top_k),
|
44 |
-
repetition_penalty=float(repetition_penalty),
|
45 |
-
use_cache=True
|
46 |
-
)
|
47 |
-
|
48 |
-
response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
49 |
-
return response
|
50 |
-
|
51 |
-
# Create Gradio interface with layout matching your second image
|
52 |
with gr.Blocks() as demo:
|
53 |
with gr.Row():
|
|
|
54 |
with gr.Column():
|
55 |
prompt = gr.Textbox(
|
56 |
label="Enter your prompt",
|
57 |
-
|
58 |
lines=5
|
59 |
)
|
60 |
|
@@ -88,12 +50,26 @@ with gr.Blocks() as demo:
|
|
88 |
minimum=1.0, maximum=2.0, value=1.1, step=0.1
|
89 |
)
|
90 |
|
|
|
91 |
with gr.Column():
|
92 |
output = gr.Textbox(
|
93 |
label="Generated Text",
|
94 |
lines=20
|
95 |
)
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# Set up event handlers
|
98 |
generate_btn.click(
|
99 |
fn=generate_text,
|
@@ -106,12 +82,6 @@ with gr.Blocks() as demo:
|
|
106 |
inputs=None,
|
107 |
outputs=[prompt, output]
|
108 |
)
|
109 |
-
|
110 |
-
# Example prompts
|
111 |
-
gr.Examples(
|
112 |
-
examples=example_prompts,
|
113 |
-
inputs=prompt
|
114 |
-
)
|
115 |
|
116 |
# Launch the app
|
117 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
|
4 |
+
# This is a simplified version showing just the UI structure
|
5 |
+
# You'll need to integrate your actual model loading and generation code
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
def generate_text(prompt, max_length, temperature, top_p, top_k, repetition_penalty):
|
8 |
+
# Your text generation function would go here
|
9 |
+
# This is just a placeholder that returns the prompt as a demonstration
|
10 |
+
return f"Generated text based on: {prompt}"
|
11 |
|
12 |
+
# Create the interface with a layout matching image 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
with gr.Blocks() as demo:
|
14 |
with gr.Row():
|
15 |
+
# Left column - Input
|
16 |
with gr.Column():
|
17 |
prompt = gr.Textbox(
|
18 |
label="Enter your prompt",
|
19 |
+
placeholder="Type your prompt here...",
|
20 |
lines=5
|
21 |
)
|
22 |
|
|
|
50 |
minimum=1.0, maximum=2.0, value=1.1, step=0.1
|
51 |
)
|
52 |
|
53 |
+
# Right column - Output
|
54 |
with gr.Column():
|
55 |
output = gr.Textbox(
|
56 |
label="Generated Text",
|
57 |
lines=20
|
58 |
)
|
59 |
|
60 |
+
# Example prompts
|
61 |
+
example_prompts = [
|
62 |
+
"Recent advances in neuroimaging suggest that",
|
63 |
+
"The role of dopamine in learning and memory involves",
|
64 |
+
"Explain the concept of neuroplasticity in simple terms",
|
65 |
+
"What are the key differences between neurons and glial cells?"
|
66 |
+
]
|
67 |
+
|
68 |
+
gr.Examples(
|
69 |
+
examples=example_prompts,
|
70 |
+
inputs=prompt
|
71 |
+
)
|
72 |
+
|
73 |
# Set up event handlers
|
74 |
generate_btn.click(
|
75 |
fn=generate_text,
|
|
|
82 |
inputs=None,
|
83 |
outputs=[prompt, output]
|
84 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# Launch the app
|
87 |
demo.launch()
|