Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from peft import PeftModel
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Set up model parameters
|
8 |
+
MODEL_ID = "alaamostafa/Microsoft-Phi-2"
|
9 |
+
BASE_MODEL_ID = "microsoft/phi-2"
|
10 |
+
|
11 |
+
# Force CPU usage and set up offload directory
|
12 |
+
device = "cpu"
|
13 |
+
print(f"Using device: {device}")
|
14 |
+
os.makedirs("offload_dir", exist_ok=True)
|
15 |
+
|
16 |
+
# Disable bitsandbytes for CPU usage
|
17 |
+
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
|
18 |
+
|
19 |
+
# Load the tokenizer
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID)
|
21 |
+
|
22 |
+
# Load base model with simple CPU configuration, avoiding device_map and 8-bit loading
|
23 |
+
print("Loading base model...")
|
24 |
+
try:
|
25 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
BASE_MODEL_ID,
|
27 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
28 |
+
trust_remote_code=True,
|
29 |
+
low_cpu_mem_usage=True, # Optimize for lower memory usage
|
30 |
+
offload_folder="offload_dir" # Set offload directory
|
31 |
+
)
|
32 |
+
|
33 |
+
# Load the fine-tuned adapter
|
34 |
+
print(f"Loading adapter from {MODEL_ID}...")
|
35 |
+
model = PeftModel.from_pretrained(
|
36 |
+
base_model,
|
37 |
+
MODEL_ID,
|
38 |
+
offload_folder="offload_dir"
|
39 |
+
)
|
40 |
+
|
41 |
+
print("Model loaded successfully!")
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error loading model: {e}")
|
44 |
+
# Create a placeholder error message for the UI
|
45 |
+
error_message = f"Failed to load model: {str(e)}\n\nThis Space may need a GPU to run properly."
|
46 |
+
|
47 |
+
def generate_text(
|
48 |
+
prompt,
|
49 |
+
max_length=256, # Reduced for CPU
|
50 |
+
temperature=0.7,
|
51 |
+
top_p=0.9,
|
52 |
+
top_k=40,
|
53 |
+
repetition_penalty=1.1
|
54 |
+
):
|
55 |
+
"""Generate text based on prompt with the fine-tuned model"""
|
56 |
+
try:
|
57 |
+
# Prepare input
|
58 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
59 |
+
|
60 |
+
# Generate text
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model.generate(
|
63 |
+
**inputs,
|
64 |
+
max_length=max_length,
|
65 |
+
temperature=temperature,
|
66 |
+
top_p=top_p,
|
67 |
+
top_k=top_k,
|
68 |
+
repetition_penalty=repetition_penalty,
|
69 |
+
do_sample=temperature > 0,
|
70 |
+
pad_token_id=tokenizer.eos_token_id
|
71 |
+
)
|
72 |
+
|
73 |
+
# Decode and return the generated text
|
74 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
75 |
+
return generated_text
|
76 |
+
except Exception as e:
|
77 |
+
return f"Error generating text: {str(e)}"
|
78 |
+
|
79 |
+
# Create the Gradio interface
|
80 |
+
css = """
|
81 |
+
.gradio-container {max-width: 800px !important}
|
82 |
+
.gr-prose code {white-space: pre-wrap !important}
|
83 |
+
"""
|
84 |
+
|
85 |
+
title = "Neuroscience Fine-tuned Phi-2 Model (CPU Version)"
|
86 |
+
description = """
|
87 |
+
This is a fine-tuned version of Microsoft's Phi-2 model, adapted specifically for neuroscience domain content.
|
88 |
+
⚠️ **Note: This model is running on CPU which means responses will be slower.** ⚠️
|
89 |
+
|
90 |
+
For best performance:
|
91 |
+
- Keep your prompts focused and clear
|
92 |
+
- Use shorter maximum length settings (128-256)
|
93 |
+
- Be patient as generation can take 30+ seconds
|
94 |
+
|
95 |
+
**Example prompts:**
|
96 |
+
- Recent advances in neuroimaging suggest that
|
97 |
+
- The role of dopamine in learning and memory involves
|
98 |
+
- Explain the concept of neuroplasticity in simple terms
|
99 |
+
- What are the key differences between neurons and glial cells?
|
100 |
+
"""
|
101 |
+
|
102 |
+
# Check if model loaded successfully
|
103 |
+
if 'error_message' in locals():
|
104 |
+
# Simple error interface
|
105 |
+
demo = gr.Interface(
|
106 |
+
fn=lambda x: error_message,
|
107 |
+
inputs=gr.Textbox(label="This model cannot be loaded on CPU"),
|
108 |
+
outputs=gr.Textbox(),
|
109 |
+
title=title,
|
110 |
+
description=description
|
111 |
+
)
|
112 |
+
else:
|
113 |
+
# Full interface
|
114 |
+
with gr.Blocks(css=css) as demo:
|
115 |
+
gr.Markdown(f"# {title}")
|
116 |
+
gr.Markdown(description)
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
with gr.Column():
|
120 |
+
prompt = gr.Textbox(
|
121 |
+
label="Enter your prompt",
|
122 |
+
placeholder="Recent advances in neuroscience suggest that",
|
123 |
+
lines=5
|
124 |
+
)
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
submit_btn = gr.Button("Generate", variant="primary")
|
128 |
+
clear_btn = gr.Button("Clear")
|
129 |
+
|
130 |
+
with gr.Accordion("Advanced Options", open=False):
|
131 |
+
max_length = gr.Slider(
|
132 |
+
minimum=64, maximum=512, value=256, step=64,
|
133 |
+
label="Maximum Length (lower is faster on CPU)"
|
134 |
+
)
|
135 |
+
temperature = gr.Slider(
|
136 |
+
minimum=0.0, maximum=1.5, value=0.7, step=0.1,
|
137 |
+
label="Temperature (0 = deterministic, 0.7 = creative, 1.5 = random)"
|
138 |
+
)
|
139 |
+
top_p = gr.Slider(
|
140 |
+
minimum=0.1, maximum=1.0, value=0.9, step=0.1,
|
141 |
+
label="Top-p (nucleus sampling)"
|
142 |
+
)
|
143 |
+
top_k = gr.Slider(
|
144 |
+
minimum=1, maximum=100, value=40, step=1,
|
145 |
+
label="Top-k"
|
146 |
+
)
|
147 |
+
repetition_penalty = gr.Slider(
|
148 |
+
minimum=1.0, maximum=2.0, value=1.1, step=0.1,
|
149 |
+
label="Repetition Penalty"
|
150 |
+
)
|
151 |
+
|
152 |
+
with gr.Column():
|
153 |
+
output = gr.Textbox(
|
154 |
+
label="Generated Text",
|
155 |
+
lines=20
|
156 |
+
)
|
157 |
+
|
158 |
+
# Set up event handlers
|
159 |
+
submit_btn.click(
|
160 |
+
fn=generate_text,
|
161 |
+
inputs=[prompt, max_length, temperature, top_p, top_k, repetition_penalty],
|
162 |
+
outputs=output
|
163 |
+
)
|
164 |
+
clear_btn.click(
|
165 |
+
fn=lambda: ("", None),
|
166 |
+
inputs=None,
|
167 |
+
outputs=[prompt, output]
|
168 |
+
)
|
169 |
+
|
170 |
+
# Example prompts
|
171 |
+
examples = [
|
172 |
+
["Recent advances in neuroimaging suggest that"],
|
173 |
+
["The role of dopamine in learning and memory involves"],
|
174 |
+
["Explain the concept of neuroplasticity in simple terms"],
|
175 |
+
["What are the key differences between neurons and glial cells?"]
|
176 |
+
]
|
177 |
+
|
178 |
+
gr.Examples(
|
179 |
+
examples=examples,
|
180 |
+
inputs=prompt
|
181 |
+
)
|
182 |
+
|
183 |
+
# Launch the app
|
184 |
+
demo.launch()
|