Spaces:
Running
Running
import torch | |
import torchvision | |
from torchvision.models import efficientnet_v2_s, EfficientNet_V2_S_Weights | |
from torch import nn | |
def create_effnet_v2_model(weights_path, num_classes=3): | |
weights = EfficientNet_V2_S_Weights.DEFAULT | |
transforms = weights.transforms() | |
model = efficientnet_v2_s() | |
model.classifier = nn.Sequential( | |
nn.Dropout(0.0), | |
nn.Linear(in_features=1280, out_features=num_classes) | |
) | |
model.load_state_dict(torch.load(f = weights_path, map_location=torch.device("cpu"))) | |
return model, transforms | |