Spaces:
Running
Running
import torch | |
import torchvision | |
from torchvision.models import efficientnet_v2_s, EfficientNet_V2_S_Weights | |
from torch import nn | |
from PIL import Image | |
from model import create_effnet_v2_model | |
import gradio as gr | |
import os | |
from timeit import default_timer as timer | |
class_names = ['Honda', 'Hyundai', 'Toyota'] | |
effnet_v2, transforms = create_effnet_v2_model(num_classes=len(class_names), weights_path="efficient_net_s_carvision_3.pth") | |
def predict(image): | |
start_time = timer() | |
# image = Image.open(image_path) | |
image = transforms(image).unsqueeze(0) | |
# image = image.to(device) | |
output = effnet_v2(image) | |
effnet_v2.eval() | |
with torch.inference_mode(): | |
probs = torch.softmax(output, dim=1) | |
pred_labels_and_probs = {class_names[i]: float(probs[0, i]) for i in range(len(class_names))} | |
pred_time = round(timer() - start_time, 5) | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio app ### | |
# Create title, description and article strings | |
title = "CarVision 🚗🚘🚙🏎️" | |
description = "An EfficientNetv2 model to classify cars as Honda, Hyundai or Toyota" | |
article = "Created by Akshay Ballal" | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs=gr.Image(type="pil"), # what are the inputs? | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs? | |
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
# Create examples list from "examples/" directory | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch() |