Spaces:
Runtime error
Runtime error
examples = [ | |
"Write an essay about meditation. [EOI]", | |
"Give me 5 steps to clean my room. [EOI]", | |
"How are the continents formed? [EOI]", | |
"Prompt: A man draws a gun in a dark alley and asks for your wallet. You begrudgingly obey. He throws it on the ground, shoots it till it screeches, and turns to you; 'you are safe now'. Write a story about given prompt. [EOI]", | |
"Write directions of a cooking recipe with these ingredients: chicken breast, carrots, green peas, celery, butter, onion, flour, salt, black pepper, celery seed, chicken broth, milk, unbaked pie crusts? [EOI]", | |
] | |
import gradio as gr | |
from transformers import AutoTokenizer, pipeline, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("akoksal/LongForm-OPT-125M") | |
generate = pipeline('text-generation', model="akoksal/LongForm-OPT-125M", tokenizer=tokenizer) | |
def predict(instruction, topp, max_length, temperature): | |
if "[EOI]" not in instruction: | |
instruction = instruction + " [EOI]" | |
x = generate(instruction, | |
do_sample=True, | |
top_p=topp, | |
num_return_sequences=1, | |
max_length=max_length, | |
temperature=temperature | |
)[0]["generated_text"] | |
return x[len(instruction):] | |
def process_example(args): | |
for x in predict(args): | |
pass | |
return x | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("""# 📜LongForm | |
The LongForm dataset is created by leveraging English corpus examples with augmented instructions. We select a diverse set of human-written documents from existing corpora such as C4 and Wikipedia and generate instructions for the given documents via LLMs. Then, we extend these examples with structured corpora examples such as Stack Exchange and WikiHow and task examples such as question answering, email writing, grammar error correction, story/poem generation, and text summarization. | |
**Paper**: https://arxiv.org/abs/2304.08460 | |
**Dataset and Models**: https://github.com/akoksal/LongForm | |
**Tips**: | |
1. Use the "[EOI]" token at the end of the instruction for OPT models. This demo adds [EOI] automatically if you forget it. | |
2. The LongForm dataset and models mainly focus on long text generation and have limitations regarding structured prediction tasks in NLP. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input") | |
with gr.Box(): | |
gr.Markdown("**Answer**") | |
output = gr.Markdown(elem_id="q-output") | |
submit = gr.Button("Generate", variant="primary") | |
gr.Examples( | |
examples=examples, | |
inputs=[instruction], | |
cache_examples=False, | |
fn=process_example, | |
outputs=[output], | |
) | |
with gr.Column(scale=1): | |
top_p = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample low-probability tokens", | |
) | |
max_length = gr.Slider( | |
label="Max length", | |
value=64, | |
minimum=1, | |
maximum=512, | |
step=4, | |
interactive=True, | |
info="The maximum length of the output", | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
value=1.0, | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
interactive=True, | |
info="Higher values sample more diverse outputs", | |
) | |
submit.click(predict, inputs=[instruction, top_p, max_length, temperature], outputs=[output]) | |
demo.queue(concurrency_count=4) | |
demo.launch() |