Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
# Openpose | |
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose | |
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose | |
# The implementation is modified from 3rd Edited Version by ControlNet | |
import math | |
import os | |
from abc import ABCMeta | |
from collections import OrderedDict | |
import cv2 | |
import matplotlib | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from PIL import Image | |
from scipy.ndimage.filters import gaussian_filter | |
from skimage.measure import label | |
from scepter.modules.annotator.base_annotator import BaseAnnotator | |
from scepter.modules.annotator.registry import ANNOTATORS | |
from scepter.modules.utils.config import dict_to_yaml | |
from scepter.modules.utils.file_system import FS | |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' | |
def padRightDownCorner(img, stride, padValue): | |
h = img.shape[0] | |
w = img.shape[1] | |
pad = 4 * [None] | |
pad[0] = 0 # up | |
pad[1] = 0 # left | |
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down | |
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right | |
img_padded = img | |
pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1)) | |
img_padded = np.concatenate((pad_up, img_padded), axis=0) | |
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1)) | |
img_padded = np.concatenate((pad_left, img_padded), axis=1) | |
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1)) | |
img_padded = np.concatenate((img_padded, pad_down), axis=0) | |
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1)) | |
img_padded = np.concatenate((img_padded, pad_right), axis=1) | |
return img_padded, pad | |
# transfer caffe model to pytorch which will match the layer name | |
def transfer(model, model_weights): | |
transfered_model_weights = {} | |
for weights_name in model.state_dict().keys(): | |
transfered_model_weights[weights_name] = model_weights['.'.join( | |
weights_name.split('.')[1:])] | |
return transfered_model_weights | |
# draw the body keypoint and lims | |
def draw_bodypose(canvas, candidate, subset): | |
stickwidth = 4 | |
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], | |
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], | |
[15, 17], [1, 16], [16, 18], [3, 17], [6, 18]] | |
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], | |
[170, 255, 0], [85, 255, 0], [0, 255, 0], [0, 255, 85], | |
[0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], | |
[0, 0, 255], [85, 0, 255], [170, 0, 255], [255, 0, 255], | |
[255, 0, 170], [255, 0, 85]] | |
for i in range(18): | |
for n in range(len(subset)): | |
index = int(subset[n][i]) | |
if index == -1: | |
continue | |
x, y = candidate[index][0:2] | |
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) | |
for i in range(17): | |
for n in range(len(subset)): | |
index = subset[n][np.array(limbSeq[i]) - 1] | |
if -1 in index: | |
continue | |
cur_canvas = canvas.copy() | |
Y = candidate[index.astype(int), 0] | |
X = candidate[index.astype(int), 1] | |
mX = np.mean(X) | |
mY = np.mean(Y) | |
length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5 | |
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) | |
polygon = cv2.ellipse2Poly( | |
(int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), | |
0, 360, 1) | |
cv2.fillConvexPoly(cur_canvas, polygon, colors[i]) | |
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) | |
# plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]]) | |
# plt.imshow(canvas[:, :, [2, 1, 0]]) | |
return canvas | |
# image drawed by opencv is not good. | |
def draw_handpose(canvas, all_hand_peaks, show_number=False): | |
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], | |
[0, 9], [9, 10], [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], | |
[15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] | |
for peaks in all_hand_peaks: | |
for ie, e in enumerate(edges): | |
if np.sum(np.all(peaks[e], axis=1) == 0) == 0: | |
x1, y1 = peaks[e[0]] | |
x2, y2 = peaks[e[1]] | |
cv2.line(canvas, (x1, y1), (x2, y2), | |
matplotlib.colors.hsv_to_rgb( | |
[ie / float(len(edges)), 1.0, 1.0]) * 255, | |
thickness=2) | |
for i, keyponit in enumerate(peaks): | |
x, y = keyponit | |
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) | |
if show_number: | |
cv2.putText(canvas, | |
str(i), (x, y), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.3, (0, 0, 0), | |
lineType=cv2.LINE_AA) | |
return canvas | |
# detect hand according to body pose keypoints | |
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/ | |
# master/src/openpose/hand/handDetector.cpp | |
def handDetect(candidate, subset, oriImg): | |
# right hand: wrist 4, elbow 3, shoulder 2 | |
# left hand: wrist 7, elbow 6, shoulder 5 | |
ratioWristElbow = 0.33 | |
detect_result = [] | |
image_height, image_width = oriImg.shape[0:2] | |
for person in subset.astype(int): | |
# if any of three not detected | |
has_left = np.sum(person[[5, 6, 7]] == -1) == 0 | |
has_right = np.sum(person[[2, 3, 4]] == -1) == 0 | |
if not (has_left or has_right): | |
continue | |
hands = [] | |
# left hand | |
if has_left: | |
left_shoulder_index, left_elbow_index, left_wrist_index = person[[ | |
5, 6, 7 | |
]] | |
x1, y1 = candidate[left_shoulder_index][:2] | |
x2, y2 = candidate[left_elbow_index][:2] | |
x3, y3 = candidate[left_wrist_index][:2] | |
hands.append([x1, y1, x2, y2, x3, y3, True]) | |
# right hand | |
if has_right: | |
right_shoulder_index, right_elbow_index, right_wrist_index = person[ | |
[2, 3, 4]] | |
x1, y1 = candidate[right_shoulder_index][:2] | |
x2, y2 = candidate[right_elbow_index][:2] | |
x3, y3 = candidate[right_wrist_index][:2] | |
hands.append([x1, y1, x2, y2, x3, y3, False]) | |
for x1, y1, x2, y2, x3, y3, is_left in hands: | |
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox | |
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]); | |
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]); | |
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow); | |
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder); | |
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder); | |
x = x3 + ratioWristElbow * (x3 - x2) | |
y = y3 + ratioWristElbow * (y3 - y2) | |
distanceWristElbow = math.sqrt((x3 - x2)**2 + (y3 - y2)**2) | |
distanceElbowShoulder = math.sqrt((x2 - x1)**2 + (y2 - y1)**2) | |
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) | |
# x-y refers to the center --> offset to topLeft point | |
# handRectangle.x -= handRectangle.width / 2.f; | |
# handRectangle.y -= handRectangle.height / 2.f; | |
x -= width / 2 | |
y -= width / 2 # width = height | |
# overflow the image | |
if x < 0: | |
x = 0 | |
if y < 0: | |
y = 0 | |
width1 = width | |
width2 = width | |
if x + width > image_width: | |
width1 = image_width - x | |
if y + width > image_height: | |
width2 = image_height - y | |
width = min(width1, width2) | |
# the max hand box value is 20 pixels | |
if width >= 20: | |
detect_result.append([int(x), int(y), int(width), is_left]) | |
''' | |
return value: [[x, y, w, True if left hand else False]]. | |
width=height since the network require squared input. | |
x, y is the coordinate of top left | |
''' | |
return detect_result | |
# get max index of 2d array | |
def npmax(array): | |
arrayindex = array.argmax(1) | |
arrayvalue = array.max(1) | |
i = arrayvalue.argmax() | |
j = arrayindex[i] | |
return i, j | |
def make_layers(block, no_relu_layers): | |
layers = [] | |
for layer_name, v in block.items(): | |
if 'pool' in layer_name: | |
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2]) | |
layers.append((layer_name, layer)) | |
else: | |
conv2d = nn.Conv2d(in_channels=v[0], | |
out_channels=v[1], | |
kernel_size=v[2], | |
stride=v[3], | |
padding=v[4]) | |
layers.append((layer_name, conv2d)) | |
if layer_name not in no_relu_layers: | |
layers.append(('relu_' + layer_name, nn.ReLU(inplace=True))) | |
return nn.Sequential(OrderedDict(layers)) | |
class bodypose_model(nn.Module): | |
def __init__(self): | |
super(bodypose_model, self).__init__() | |
# these layers have no relu layer | |
no_relu_layers = [ | |
'conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1', | |
'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2', | |
'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1', | |
'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1' | |
] | |
blocks = {} | |
block0 = OrderedDict([('conv1_1', [3, 64, 3, 1, 1]), | |
('conv1_2', [64, 64, 3, 1, 1]), | |
('pool1_stage1', [2, 2, 0]), | |
('conv2_1', [64, 128, 3, 1, 1]), | |
('conv2_2', [128, 128, 3, 1, 1]), | |
('pool2_stage1', [2, 2, 0]), | |
('conv3_1', [128, 256, 3, 1, 1]), | |
('conv3_2', [256, 256, 3, 1, 1]), | |
('conv3_3', [256, 256, 3, 1, 1]), | |
('conv3_4', [256, 256, 3, 1, 1]), | |
('pool3_stage1', [2, 2, 0]), | |
('conv4_1', [256, 512, 3, 1, 1]), | |
('conv4_2', [512, 512, 3, 1, 1]), | |
('conv4_3_CPM', [512, 256, 3, 1, 1]), | |
('conv4_4_CPM', [256, 128, 3, 1, 1])]) | |
# Stage 1 | |
block1_1 = OrderedDict([('conv5_1_CPM_L1', [128, 128, 3, 1, 1]), | |
('conv5_2_CPM_L1', [128, 128, 3, 1, 1]), | |
('conv5_3_CPM_L1', [128, 128, 3, 1, 1]), | |
('conv5_4_CPM_L1', [128, 512, 1, 1, 0]), | |
('conv5_5_CPM_L1', [512, 38, 1, 1, 0])]) | |
block1_2 = OrderedDict([('conv5_1_CPM_L2', [128, 128, 3, 1, 1]), | |
('conv5_2_CPM_L2', [128, 128, 3, 1, 1]), | |
('conv5_3_CPM_L2', [128, 128, 3, 1, 1]), | |
('conv5_4_CPM_L2', [128, 512, 1, 1, 0]), | |
('conv5_5_CPM_L2', [512, 19, 1, 1, 0])]) | |
blocks['block1_1'] = block1_1 | |
blocks['block1_2'] = block1_2 | |
self.model0 = make_layers(block0, no_relu_layers) | |
# Stages 2 - 6 | |
for i in range(2, 7): | |
blocks['block%d_1' % i] = OrderedDict([ | |
('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]), | |
('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]), | |
('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0]) | |
]) | |
blocks['block%d_2' % i] = OrderedDict([ | |
('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]), | |
('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]), | |
('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0]) | |
]) | |
for k in blocks.keys(): | |
blocks[k] = make_layers(blocks[k], no_relu_layers) | |
self.model1_1 = blocks['block1_1'] | |
self.model2_1 = blocks['block2_1'] | |
self.model3_1 = blocks['block3_1'] | |
self.model4_1 = blocks['block4_1'] | |
self.model5_1 = blocks['block5_1'] | |
self.model6_1 = blocks['block6_1'] | |
self.model1_2 = blocks['block1_2'] | |
self.model2_2 = blocks['block2_2'] | |
self.model3_2 = blocks['block3_2'] | |
self.model4_2 = blocks['block4_2'] | |
self.model5_2 = blocks['block5_2'] | |
self.model6_2 = blocks['block6_2'] | |
def forward(self, x): | |
out1 = self.model0(x) | |
out1_1 = self.model1_1(out1) | |
out1_2 = self.model1_2(out1) | |
out2 = torch.cat([out1_1, out1_2, out1], 1) | |
out2_1 = self.model2_1(out2) | |
out2_2 = self.model2_2(out2) | |
out3 = torch.cat([out2_1, out2_2, out1], 1) | |
out3_1 = self.model3_1(out3) | |
out3_2 = self.model3_2(out3) | |
out4 = torch.cat([out3_1, out3_2, out1], 1) | |
out4_1 = self.model4_1(out4) | |
out4_2 = self.model4_2(out4) | |
out5 = torch.cat([out4_1, out4_2, out1], 1) | |
out5_1 = self.model5_1(out5) | |
out5_2 = self.model5_2(out5) | |
out6 = torch.cat([out5_1, out5_2, out1], 1) | |
out6_1 = self.model6_1(out6) | |
out6_2 = self.model6_2(out6) | |
return out6_1, out6_2 | |
class handpose_model(nn.Module): | |
def __init__(self): | |
super(handpose_model, self).__init__() | |
# these layers have no relu layer | |
no_relu_layers = [ | |
'conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3', 'Mconv7_stage4', | |
'Mconv7_stage5', 'Mconv7_stage6' | |
] | |
# stage 1 | |
block1_0 = OrderedDict([('conv1_1', [3, 64, 3, 1, 1]), | |
('conv1_2', [64, 64, 3, 1, 1]), | |
('pool1_stage1', [2, 2, 0]), | |
('conv2_1', [64, 128, 3, 1, 1]), | |
('conv2_2', [128, 128, 3, 1, 1]), | |
('pool2_stage1', [2, 2, 0]), | |
('conv3_1', [128, 256, 3, 1, 1]), | |
('conv3_2', [256, 256, 3, 1, 1]), | |
('conv3_3', [256, 256, 3, 1, 1]), | |
('conv3_4', [256, 256, 3, 1, 1]), | |
('pool3_stage1', [2, 2, 0]), | |
('conv4_1', [256, 512, 3, 1, 1]), | |
('conv4_2', [512, 512, 3, 1, 1]), | |
('conv4_3', [512, 512, 3, 1, 1]), | |
('conv4_4', [512, 512, 3, 1, 1]), | |
('conv5_1', [512, 512, 3, 1, 1]), | |
('conv5_2', [512, 512, 3, 1, 1]), | |
('conv5_3_CPM', [512, 128, 3, 1, 1])]) | |
block1_1 = OrderedDict([('conv6_1_CPM', [128, 512, 1, 1, 0]), | |
('conv6_2_CPM', [512, 22, 1, 1, 0])]) | |
blocks = {} | |
blocks['block1_0'] = block1_0 | |
blocks['block1_1'] = block1_1 | |
# stage 2-6 | |
for i in range(2, 7): | |
blocks['block%d' % i] = OrderedDict([ | |
('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]), | |
('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]), | |
('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]), | |
('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]), | |
('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]), | |
('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]), | |
('Mconv7_stage%d' % i, [128, 22, 1, 1, 0]) | |
]) | |
for k in blocks.keys(): | |
blocks[k] = make_layers(blocks[k], no_relu_layers) | |
self.model1_0 = blocks['block1_0'] | |
self.model1_1 = blocks['block1_1'] | |
self.model2 = blocks['block2'] | |
self.model3 = blocks['block3'] | |
self.model4 = blocks['block4'] | |
self.model5 = blocks['block5'] | |
self.model6 = blocks['block6'] | |
def forward(self, x): | |
out1_0 = self.model1_0(x) | |
out1_1 = self.model1_1(out1_0) | |
concat_stage2 = torch.cat([out1_1, out1_0], 1) | |
out_stage2 = self.model2(concat_stage2) | |
concat_stage3 = torch.cat([out_stage2, out1_0], 1) | |
out_stage3 = self.model3(concat_stage3) | |
concat_stage4 = torch.cat([out_stage3, out1_0], 1) | |
out_stage4 = self.model4(concat_stage4) | |
concat_stage5 = torch.cat([out_stage4, out1_0], 1) | |
out_stage5 = self.model5(concat_stage5) | |
concat_stage6 = torch.cat([out_stage5, out1_0], 1) | |
out_stage6 = self.model6(concat_stage6) | |
return out_stage6 | |
class Hand(object): | |
def __init__(self, model_path, device='cuda'): | |
self.model = handpose_model() | |
if torch.cuda.is_available(): | |
self.model = self.model.to(device) | |
model_dict = transfer(self.model, torch.load(model_path)) | |
self.model.load_state_dict(model_dict) | |
self.model.eval() | |
self.device = device | |
def __call__(self, oriImg): | |
scale_search = [0.5, 1.0, 1.5, 2.0] | |
# scale_search = [0.5] | |
boxsize = 368 | |
stride = 8 | |
padValue = 128 | |
thre = 0.05 | |
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] | |
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22)) | |
# paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) | |
for m in range(len(multiplier)): | |
scale = multiplier[m] | |
imageToTest = cv2.resize(oriImg, (0, 0), | |
fx=scale, | |
fy=scale, | |
interpolation=cv2.INTER_CUBIC) | |
imageToTest_padded, pad = padRightDownCorner( | |
imageToTest, stride, padValue) | |
im = np.transpose( | |
np.float32(imageToTest_padded[:, :, :, np.newaxis]), | |
(3, 2, 0, 1)) / 256 - 0.5 | |
im = np.ascontiguousarray(im) | |
data = torch.from_numpy(im).float() | |
if torch.cuda.is_available(): | |
data = data.to(self.device) | |
# data = data.permute([2, 0, 1]).unsqueeze(0).float() | |
with torch.no_grad(): | |
output = self.model(data).cpu().numpy() | |
# output = self.model(data).numpy()q | |
# extract outputs, resize, and remove padding | |
heatmap = np.transpose(np.squeeze(output), | |
(1, 2, 0)) # output 1 is heatmaps | |
heatmap = cv2.resize(heatmap, (0, 0), | |
fx=stride, | |
fy=stride, | |
interpolation=cv2.INTER_CUBIC) | |
heatmap = heatmap[:imageToTest_padded.shape[0] - | |
pad[2], :imageToTest_padded.shape[1] - pad[3], :] | |
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), | |
interpolation=cv2.INTER_CUBIC) | |
heatmap_avg += heatmap / len(multiplier) | |
all_peaks = [] | |
for part in range(21): | |
map_ori = heatmap_avg[:, :, part] | |
one_heatmap = gaussian_filter(map_ori, sigma=3) | |
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8) | |
# 全部小于阈值 | |
if np.sum(binary) == 0: | |
all_peaks.append([0, 0]) | |
continue | |
label_img, label_numbers = label(binary, | |
return_num=True, | |
connectivity=binary.ndim) | |
max_index = np.argmax([ | |
np.sum(map_ori[label_img == i]) | |
for i in range(1, label_numbers + 1) | |
]) + 1 | |
label_img[label_img != max_index] = 0 | |
map_ori[label_img == 0] = 0 | |
y, x = npmax(map_ori) | |
all_peaks.append([x, y]) | |
return np.array(all_peaks) | |
class Body(object): | |
def __init__(self, model_path, device='cuda'): | |
self.model = bodypose_model() | |
if torch.cuda.is_available(): | |
self.model = self.model.to(device) | |
model_dict = transfer(self.model, torch.load(model_path)) | |
self.model.load_state_dict(model_dict) | |
self.model.eval() | |
self.device = device | |
def __call__(self, oriImg): | |
# scale_search = [0.5, 1.0, 1.5, 2.0] | |
scale_search = [0.5] | |
boxsize = 368 | |
stride = 8 | |
padValue = 128 | |
thre1 = 0.1 | |
thre2 = 0.05 | |
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] | |
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19)) | |
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) | |
for m in range(len(multiplier)): | |
scale = multiplier[m] | |
imageToTest = cv2.resize(oriImg, (0, 0), | |
fx=scale, | |
fy=scale, | |
interpolation=cv2.INTER_CUBIC) | |
imageToTest_padded, pad = padRightDownCorner( | |
imageToTest, stride, padValue) | |
im = np.transpose( | |
np.float32(imageToTest_padded[:, :, :, np.newaxis]), | |
(3, 2, 0, 1)) / 256 - 0.5 | |
im = np.ascontiguousarray(im) | |
data = torch.from_numpy(im).float() | |
if torch.cuda.is_available(): | |
data = data.to(self.device) | |
# data = data.permute([2, 0, 1]).unsqueeze(0).float() | |
with torch.no_grad(): | |
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data) | |
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy() | |
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy() | |
# extract outputs, resize, and remove padding | |
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) | |
# output 1 is heatmaps | |
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), | |
(1, 2, 0)) # output 1 is heatmaps | |
heatmap = cv2.resize(heatmap, (0, 0), | |
fx=stride, | |
fy=stride, | |
interpolation=cv2.INTER_CUBIC) | |
heatmap = heatmap[:imageToTest_padded.shape[0] - | |
pad[2], :imageToTest_padded.shape[1] - pad[3], :] | |
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), | |
interpolation=cv2.INTER_CUBIC) | |
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs | |
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), | |
(1, 2, 0)) # output 0 is PAFs | |
paf = cv2.resize(paf, (0, 0), | |
fx=stride, | |
fy=stride, | |
interpolation=cv2.INTER_CUBIC) | |
paf = paf[:imageToTest_padded.shape[0] - | |
pad[2], :imageToTest_padded.shape[1] - pad[3], :] | |
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), | |
interpolation=cv2.INTER_CUBIC) | |
heatmap_avg += heatmap_avg + heatmap / len(multiplier) | |
paf_avg += +paf / len(multiplier) | |
all_peaks = [] | |
peak_counter = 0 | |
for part in range(18): | |
map_ori = heatmap_avg[:, :, part] | |
one_heatmap = gaussian_filter(map_ori, sigma=3) | |
map_left = np.zeros(one_heatmap.shape) | |
map_left[1:, :] = one_heatmap[:-1, :] | |
map_right = np.zeros(one_heatmap.shape) | |
map_right[:-1, :] = one_heatmap[1:, :] | |
map_up = np.zeros(one_heatmap.shape) | |
map_up[:, 1:] = one_heatmap[:, :-1] | |
map_down = np.zeros(one_heatmap.shape) | |
map_down[:, :-1] = one_heatmap[:, 1:] | |
peaks_binary = np.logical_and.reduce( | |
(one_heatmap >= map_left, one_heatmap >= map_right, | |
one_heatmap >= map_up, one_heatmap >= map_down, | |
one_heatmap > thre1)) | |
peaks = list( | |
zip(np.nonzero(peaks_binary)[1], | |
np.nonzero(peaks_binary)[0])) # note reverse | |
peaks_with_score = [x + (map_ori[x[1], x[0]], ) for x in peaks] | |
peak_id = range(peak_counter, peak_counter + len(peaks)) | |
peaks_with_score_and_id = [ | |
peaks_with_score[i] + (peak_id[i], ) | |
for i in range(len(peak_id)) | |
] | |
all_peaks.append(peaks_with_score_and_id) | |
peak_counter += len(peaks) | |
# find connection in the specified sequence, center 29 is in the position 15 | |
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], | |
[9, 10], [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], | |
[1, 15], [15, 17], [1, 16], [16, 18], [3, 17], [6, 18]] | |
# the middle joints heatmap correpondence | |
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], | |
[19, 20], [21, 22], [23, 24], [25, 26], [27, 28], [29, 30], | |
[47, 48], [49, 50], [53, 54], [51, 52], [55, 56], [37, 38], | |
[45, 46]] | |
connection_all = [] | |
special_k = [] | |
mid_num = 10 | |
for k in range(len(mapIdx)): | |
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]] | |
candA = all_peaks[limbSeq[k][0] - 1] | |
candB = all_peaks[limbSeq[k][1] - 1] | |
nA = len(candA) | |
nB = len(candB) | |
indexA, indexB = limbSeq[k] | |
if (nA != 0 and nB != 0): | |
connection_candidate = [] | |
for i in range(nA): | |
for j in range(nB): | |
vec = np.subtract(candB[j][:2], candA[i][:2]) | |
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) | |
norm = max(0.001, norm) | |
vec = np.divide(vec, norm) | |
startend = list( | |
zip( | |
np.linspace(candA[i][0], | |
candB[j][0], | |
num=mid_num), | |
np.linspace(candA[i][1], | |
candB[j][1], | |
num=mid_num))) | |
vec_x = np.array([ | |
score_mid[int(round(startend[ii][1])), | |
int(round(startend[ii][0])), 0] | |
for ii in range(len(startend)) | |
]) | |
vec_y = np.array([ | |
score_mid[int(round(startend[ii][1])), | |
int(round(startend[ii][0])), 1] | |
for ii in range(len(startend)) | |
]) | |
score_midpts = np.multiply( | |
vec_x, vec[0]) + np.multiply(vec_y, vec[1]) | |
score_with_dist_prior = sum(score_midpts) / len( | |
score_midpts) + min( | |
0.5 * oriImg.shape[0] / norm - 1, 0) | |
criterion1 = len(np.nonzero( | |
score_midpts > thre2)[0]) > 0.8 * len(score_midpts) | |
criterion2 = score_with_dist_prior > 0 | |
if criterion1 and criterion2: | |
connection_candidate.append([ | |
i, j, score_with_dist_prior, | |
score_with_dist_prior + candA[i][2] + | |
candB[j][2] | |
]) | |
connection_candidate = sorted(connection_candidate, | |
key=lambda x: x[2], | |
reverse=True) | |
connection = np.zeros((0, 5)) | |
for c in range(len(connection_candidate)): | |
i, j, s = connection_candidate[c][0:3] | |
if (i not in connection[:, 3] | |
and j not in connection[:, 4]): | |
connection = np.vstack( | |
[connection, [candA[i][3], candB[j][3], s, i, j]]) | |
if (len(connection) >= min(nA, nB)): | |
break | |
connection_all.append(connection) | |
else: | |
special_k.append(k) | |
connection_all.append([]) | |
# last number in each row is the total parts number of that person | |
# the second last number in each row is the score of the overall configuration | |
subset = -1 * np.ones((0, 20)) | |
candidate = np.array( | |
[item for sublist in all_peaks for item in sublist]) | |
for k in range(len(mapIdx)): | |
if k not in special_k: | |
partAs = connection_all[k][:, 0] | |
partBs = connection_all[k][:, 1] | |
indexA, indexB = np.array(limbSeq[k]) - 1 | |
for i in range(len(connection_all[k])): # = 1:size(temp,1) | |
found = 0 | |
subset_idx = [-1, -1] | |
for j in range(len(subset)): # 1:size(subset,1): | |
if subset[j][indexA] == partAs[i] or subset[j][ | |
indexB] == partBs[i]: | |
subset_idx[found] = j | |
found += 1 | |
if found == 1: | |
j = subset_idx[0] | |
if subset[j][indexB] != partBs[i]: | |
subset[j][indexB] = partBs[i] | |
subset[j][-1] += 1 | |
subset[j][-2] += candidate[ | |
partBs[i].astype(int), | |
2] + connection_all[k][i][2] | |
elif found == 2: # if found 2 and disjoint, merge them | |
j1, j2 = subset_idx | |
membership = ((subset[j1] >= 0).astype(int) + | |
(subset[j2] >= 0).astype(int))[:-2] | |
if len(np.nonzero(membership == 2)[0]) == 0: # merge | |
subset[j1][:-2] += (subset[j2][:-2] + 1) | |
subset[j1][-2:] += subset[j2][-2:] | |
subset[j1][-2] += connection_all[k][i][2] | |
subset = np.delete(subset, j2, 0) | |
else: # as like found == 1 | |
subset[j1][indexB] = partBs[i] | |
subset[j1][-1] += 1 | |
subset[j1][-2] += candidate[ | |
partBs[i].astype(int), | |
2] + connection_all[k][i][2] | |
# if find no partA in the subset, create a new subset | |
elif not found and k < 17: | |
row = -1 * np.ones(20) | |
row[indexA] = partAs[i] | |
row[indexB] = partBs[i] | |
row[-1] = 2 | |
row[-2] = sum( | |
candidate[connection_all[k][i, :2].astype(int), | |
2]) + connection_all[k][i][2] | |
subset = np.vstack([subset, row]) | |
# delete some rows of subset which has few parts occur | |
deleteIdx = [] | |
for i in range(len(subset)): | |
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: | |
deleteIdx.append(i) | |
subset = np.delete(subset, deleteIdx, axis=0) | |
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts | |
# candidate: x, y, score, id | |
return candidate, subset | |
class OpenposeAnnotator(BaseAnnotator, metaclass=ABCMeta): | |
para_dict = {} | |
def __init__(self, cfg, logger=None): | |
super().__init__(cfg, logger=logger) | |
with FS.get_from(cfg.BODY_MODEL_PATH, | |
wait_finish=True) as body_model_path: | |
self.body_estimation = Body(body_model_path, device='cpu') | |
with FS.get_from(cfg.HAND_MODEL_PATH, | |
wait_finish=True) as hand_model_path: | |
self.hand_estimation = Hand(hand_model_path, device='cpu') | |
self.use_hand = cfg.get('USE_HAND', False) | |
def to(self, device): | |
self.body_estimation.model = self.body_estimation.model.to(device) | |
self.body_estimation.device = device | |
self.hand_estimation.model = self.hand_estimation.model.to(device) | |
self.hand_estimation.device = device | |
return self | |
def forward(self, image): | |
if isinstance(image, Image.Image): | |
image = np.array(image) | |
elif isinstance(image, torch.Tensor): | |
image = image.detach().cpu().numpy() | |
elif isinstance(image, np.ndarray): | |
image = image.copy() | |
else: | |
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.' | |
image = image[:, :, ::-1] | |
candidate, subset = self.body_estimation(image) | |
canvas = np.zeros_like(image) | |
canvas = draw_bodypose(canvas, candidate, subset) | |
if self.use_hand: | |
hands_list = handDetect(candidate, subset, image) | |
all_hand_peaks = [] | |
for x, y, w, is_left in hands_list: | |
peaks = self.hand_estimation(image[y:y + w, x:x + w, :]) | |
peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], | |
peaks[:, 0] + x) | |
peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], | |
peaks[:, 1] + y) | |
all_hand_peaks.append(peaks) | |
canvas = draw_handpose(canvas, all_hand_peaks) | |
return canvas | |
def get_config_template(): | |
return dict_to_yaml('ANNOTATORS', | |
__class__.__name__, | |
OpenposeAnnotator.para_dict, | |
set_name=True) | |