Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
# Please use this implementation in your products | |
# This implementation may produce slightly different results from Saining Xie's official implementations, | |
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations. | |
# Different from official models and other implementations, this is an RGB-input model (rather than BGR) | |
# and in this way it works better for gradio's RGB protocol | |
from abc import ABCMeta | |
import cv2 | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from scepter.modules.annotator.base_annotator import BaseAnnotator | |
from scepter.modules.annotator.registry import ANNOTATORS | |
from scepter.modules.utils.config import dict_to_yaml | |
from scepter.modules.utils.distribute import we | |
from scepter.modules.utils.file_system import FS | |
def nms(x, t, s): | |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) | |
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) | |
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) | |
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) | |
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) | |
y = np.zeros_like(x) | |
for f in [f1, f2, f3, f4]: | |
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) | |
z = np.zeros_like(y, dtype=np.uint8) | |
z[y > t] = 255 | |
return z | |
class DoubleConvBlock(torch.nn.Module): | |
def __init__(self, input_channel, output_channel, layer_number): | |
super().__init__() | |
self.convs = torch.nn.Sequential() | |
self.convs.append( | |
torch.nn.Conv2d(in_channels=input_channel, | |
out_channels=output_channel, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1)) | |
for i in range(1, layer_number): | |
self.convs.append( | |
torch.nn.Conv2d(in_channels=output_channel, | |
out_channels=output_channel, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=1)) | |
self.projection = torch.nn.Conv2d(in_channels=output_channel, | |
out_channels=1, | |
kernel_size=(1, 1), | |
stride=(1, 1), | |
padding=0) | |
def __call__(self, x, down_sampling=False): | |
h = x | |
if down_sampling: | |
h = torch.nn.functional.max_pool2d(h, | |
kernel_size=(2, 2), | |
stride=(2, 2)) | |
for conv in self.convs: | |
h = conv(h) | |
h = torch.nn.functional.relu(h) | |
return h, self.projection(h) | |
class ControlNetHED_Apache2(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) | |
self.block1 = DoubleConvBlock(input_channel=3, | |
output_channel=64, | |
layer_number=2) | |
self.block2 = DoubleConvBlock(input_channel=64, | |
output_channel=128, | |
layer_number=2) | |
self.block3 = DoubleConvBlock(input_channel=128, | |
output_channel=256, | |
layer_number=3) | |
self.block4 = DoubleConvBlock(input_channel=256, | |
output_channel=512, | |
layer_number=3) | |
self.block5 = DoubleConvBlock(input_channel=512, | |
output_channel=512, | |
layer_number=3) | |
def __call__(self, x): | |
h = x - self.norm | |
h, projection1 = self.block1(h) | |
h, projection2 = self.block2(h, down_sampling=True) | |
h, projection3 = self.block3(h, down_sampling=True) | |
h, projection4 = self.block4(h, down_sampling=True) | |
h, projection5 = self.block5(h, down_sampling=True) | |
return projection1, projection2, projection3, projection4, projection5 | |
class HedAnnotator(BaseAnnotator, metaclass=ABCMeta): | |
para_dict = {} | |
def __init__(self, cfg, logger=None): | |
super().__init__(cfg, logger=logger) | |
self.netNetwork = ControlNetHED_Apache2().float().eval() | |
pretrained_model = cfg.get('PRETRAINED_MODEL', None) | |
if pretrained_model: | |
with FS.get_from(pretrained_model, wait_finish=True) as local_path: | |
self.netNetwork.load_state_dict(torch.load(local_path)) | |
def forward(self, image): | |
if isinstance(image, torch.Tensor): | |
if len(image.shape) == 3: | |
image = rearrange(image, 'h w c -> 1 c h w') | |
B, C, H, W = image.shape | |
else: | |
raise "Unsurpport input image's shape" | |
elif isinstance(image, np.ndarray): | |
image = torch.from_numpy(image.copy()).float() | |
if len(image.shape) == 3: | |
image = rearrange(image, 'h w c -> 1 c h w') | |
B, C, H, W = image.shape | |
else: | |
raise "Unsurpport input image's shape" | |
else: | |
raise "Unsurpport input image's type" | |
edges = self.netNetwork(image.to(we.device_id)) | |
edges = [ | |
e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges | |
] | |
edges = [ | |
cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) | |
for e in edges | |
] | |
edges = np.stack(edges, axis=2) | |
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) | |
edge = 255 - (edge * 255.0).clip(0, 255).astype(np.uint8) | |
return edge[..., None].repeat(3, 2) | |
def get_config_template(): | |
return dict_to_yaml('ANNOTATORS', | |
__class__.__name__, | |
HedAnnotator.para_dict, | |
set_name=True) | |