Spaces:
Runtime error
Runtime error
import os | |
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/compressor_full.pt") | |
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/reverb_full.pt") | |
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/amp_full.pt") | |
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/delay_full.pt") | |
os.system("wget https://csteinmetz1.github.io/steerable-nafx/models/synth2synth_full.pt") | |
import sys | |
import math | |
import torch | |
import librosa.display | |
import auraloss | |
import torchaudio | |
import numpy as np | |
import scipy.signal | |
from tqdm.notebook import tqdm | |
from time import sleep | |
import pyloudnorm as pyln | |
import gradio as gr | |
def measure_rt60(h, fs=1, decay_db=30, rt60_tgt=None): | |
""" | |
Analyze the RT60 of an impulse response. | |
Args: | |
h (ndarray): The discrete time impulse response as 1d array. | |
fs (float, optional): Sample rate of the impulse response. (Default: 48000) | |
decay_db (float, optional): The decay in decibels for which we actually estimate the time. (Default: 60) | |
rt60_tgt (float, optional): This parameter can be used to indicate a target RT60. (Default: None) | |
Returns: | |
est_rt60 (float): Estimated RT60. | |
""" | |
h = np.array(h) | |
fs = float(fs) | |
# The power of the impulse response in dB | |
power = h ** 2 | |
energy = np.cumsum(power[::-1])[::-1] # Integration according to Schroeder | |
try: | |
# remove the possibly all zero tail | |
i_nz = np.max(np.where(energy > 0)[0]) | |
energy = energy[:i_nz] | |
energy_db = 10 * np.log10(energy) | |
energy_db -= energy_db[0] | |
# -5 dB headroom | |
i_5db = np.min(np.where(-5 - energy_db > 0)[0]) | |
e_5db = energy_db[i_5db] | |
t_5db = i_5db / fs | |
# after decay | |
i_decay = np.min(np.where(-5 - decay_db - energy_db > 0)[0]) | |
t_decay = i_decay / fs | |
# compute the decay time | |
decay_time = t_decay - t_5db | |
est_rt60 = (60 / decay_db) * decay_time | |
except: | |
est_rt60 = np.array(0.0) | |
return est_rt60 | |
def causal_crop(x, length: int): | |
if x.shape[-1] != length: | |
stop = x.shape[-1] - 1 | |
start = stop - length | |
x = x[..., start:stop] | |
return x | |
class FiLM(torch.nn.Module): | |
def __init__( | |
self, | |
cond_dim, # dim of conditioning input | |
num_features, # dim of the conv channel | |
batch_norm=True, | |
): | |
super().__init__() | |
self.num_features = num_features | |
self.batch_norm = batch_norm | |
if batch_norm: | |
self.bn = torch.nn.BatchNorm1d(num_features, affine=False) | |
self.adaptor = torch.nn.Linear(cond_dim, num_features * 2) | |
def forward(self, x, cond): | |
cond = self.adaptor(cond) | |
g, b = torch.chunk(cond, 2, dim=-1) | |
g = g.permute(0, 2, 1) | |
b = b.permute(0, 2, 1) | |
if self.batch_norm: | |
x = self.bn(x) # apply BatchNorm without affine | |
x = (x * g) + b # then apply conditional affine | |
return x | |
class TCNBlock(torch.nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, dilation, cond_dim=0, activation=True): | |
super().__init__() | |
self.conv = torch.nn.Conv1d( | |
in_channels, | |
out_channels, | |
kernel_size, | |
dilation=dilation, | |
padding=0, #((kernel_size-1)//2)*dilation, | |
bias=True) | |
if cond_dim > 0: | |
self.film = FiLM(cond_dim, out_channels, batch_norm=False) | |
if activation: | |
#self.act = torch.nn.Tanh() | |
self.act = torch.nn.PReLU() | |
self.res = torch.nn.Conv1d(in_channels, out_channels, 1, bias=False) | |
def forward(self, x, c=None): | |
x_in = x | |
x = self.conv(x) | |
if hasattr(self, "film"): | |
x = self.film(x, c) | |
if hasattr(self, "act"): | |
x = self.act(x) | |
x_res = causal_crop(self.res(x_in), x.shape[-1]) | |
x = x + x_res | |
return x | |
class TCN(torch.nn.Module): | |
def __init__(self, n_inputs=1, n_outputs=1, n_blocks=10, kernel_size=13, n_channels=64, dilation_growth=4, cond_dim=0): | |
super().__init__() | |
self.kernel_size = kernel_size | |
self.n_channels = n_channels | |
self.dilation_growth = dilation_growth | |
self.n_blocks = n_blocks | |
self.stack_size = n_blocks | |
self.blocks = torch.nn.ModuleList() | |
for n in range(n_blocks): | |
if n == 0: | |
in_ch = n_inputs | |
out_ch = n_channels | |
act = True | |
elif (n+1) == n_blocks: | |
in_ch = n_channels | |
out_ch = n_outputs | |
act = True | |
else: | |
in_ch = n_channels | |
out_ch = n_channels | |
act = True | |
dilation = dilation_growth ** n | |
self.blocks.append(TCNBlock(in_ch, out_ch, kernel_size, dilation, cond_dim=cond_dim, activation=act)) | |
def forward(self, x, c=None): | |
for block in self.blocks: | |
x = block(x, c) | |
return x | |
def compute_receptive_field(self): | |
"""Compute the receptive field in samples.""" | |
rf = self.kernel_size | |
for n in range(1, self.n_blocks): | |
dilation = self.dilation_growth ** (n % self.stack_size) | |
rf = rf + ((self.kernel_size - 1) * dilation) | |
return rf | |
# setup the pre-trained models | |
model_comp = torch.load("compressor_full.pt", map_location="cpu").eval() | |
model_verb = torch.load("reverb_full.pt", map_location="cpu").eval() | |
model_amp = torch.load("amp_full.pt", map_location="cpu").eval() | |
model_delay = torch.load("delay_full.pt", map_location="cpu").eval() | |
model_synth = torch.load("synth2synth_full.pt", map_location="cpu").eval() | |
def inference(aud, effect_type): | |
x_p, sample_rate = torchaudio.load(aud) | |
effect_type = effect_type #@param ["Compressor", "Reverb", "Amp", "Analog Delay", "Synth2Synth"] | |
gain_dB = -24 #@param {type:"slider", min:-24, max:24, step:0.1} | |
c0 = -1.4 #@param {type:"slider", min:-10, max:10, step:0.1} | |
c1 = 3 #@param {type:"slider", min:-10, max:10, step:0.1} | |
mix = 70 #@param {type:"slider", min:0, max:100, step:1} | |
width = 50 #@param {type:"slider", min:0, max:100, step:1} | |
max_length = 30 #@param {type:"slider", min:5, max:120, step:1} | |
stereo = True #@param {type:"boolean"} | |
tail = True #@param {type:"boolean"} | |
# select model type | |
if effect_type == "Compressor": | |
pt_model = model_comp | |
elif effect_type == "Reverb": | |
pt_model = model_verb | |
elif effect_type == "Amp": | |
pt_model = model_amp | |
elif effect_type == "Analog Delay": | |
pt_model = model_delay | |
elif effect_type == "Synth2Synth": | |
pt_model = model_synth | |
# measure the receptive field | |
pt_model_rf = pt_model.compute_receptive_field() | |
# crop input signal if needed | |
max_samples = int(sample_rate * max_length) | |
x_p_crop = x_p[:,:max_samples] | |
chs = x_p_crop.shape[0] | |
# if mono and stereo requested | |
if chs == 1 and stereo: | |
x_p_crop = x_p_crop.repeat(2,1) | |
chs = 2 | |
# pad the input signal | |
front_pad = pt_model_rf-1 | |
back_pad = 0 if not tail else front_pad | |
x_p_pad = torch.nn.functional.pad(x_p_crop, (front_pad, back_pad)) | |
# design highpass filter | |
sos = scipy.signal.butter( | |
8, | |
20.0, | |
fs=sample_rate, | |
output="sos", | |
btype="highpass" | |
) | |
# compute linear gain | |
gain_ln = 10 ** (gain_dB / 20.0) | |
# process audio with pre-trained model | |
with torch.no_grad(): | |
y_hat = torch.zeros(x_p_crop.shape[0], x_p_crop.shape[1] + back_pad) | |
for n in range(chs): | |
if n == 0: | |
factor = (width*5e-3) | |
elif n == 1: | |
factor = -(width*5e-3) | |
c = torch.tensor([float(c0+factor), float(c1+factor)]).view(1,1,-1) | |
y_hat_ch = pt_model(gain_ln * x_p_pad[n,:].view(1,1,-1), c) | |
y_hat_ch = scipy.signal.sosfilt(sos, y_hat_ch.view(-1).numpy()) | |
y_hat_ch = torch.tensor(y_hat_ch) | |
y_hat[n,:] = y_hat_ch | |
# pad the dry signal | |
x_dry = torch.nn.functional.pad(x_p_crop, (0,back_pad)) | |
# normalize each first | |
y_hat /= y_hat.abs().max() | |
x_dry /= x_dry.abs().max() | |
# mix | |
mix = mix/100.0 | |
y_hat = (mix * y_hat) + ((1-mix) * x_dry) | |
# remove transient | |
y_hat = y_hat[...,8192:] | |
y_hat /= y_hat.abs().max() | |
torchaudio.save("output.mp3", y_hat.view(chs,-1), sample_rate, compression=320.0) | |
return "output.mp3" | |
title = "Steerable nafx" | |
description = "Gradio demo for Steerable discovery of neural audio effects. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.02926' target='_blank'>Steerable discovery of neural audio effects</a> | <a href='https://github.com/csteinmetz1/steerable-nafx' target='_blank'>Github Repo</a></p>" | |
gr.Interface( | |
inference, | |
[gr.inputs.Audio(type="filepath", label="Input"),gr.inputs.Dropdown(choices=["Compressor", "Reverb", "Amp", "Analog Delay", "Synth2Synth"], type="value", default="Analog Delay", label="Effect Type")], | |
gr.outputs.Audio(type="file", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
enable_queue=True | |
).launch(debug=True) | |