|
import os |
|
os.system("hub install openpose_body_estimation==1.0.0") |
|
import gradio as gr |
|
import paddlehub as hub |
|
import numpy as np |
|
|
|
model = hub.Module(name='openpose_body_estimation') |
|
def inference(image): |
|
result = model.predict(image.name) |
|
return Image.fromarray(np.uint8(result[0])[:,:,::-1]).convert('RGB') |
|
|
|
title = "UGATIT-selfie2anime" |
|
description = "Gradio demo for UGATIT-selfie2anime. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.10830' target='_blank'>U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation</a> | <a href='https://github.com/taki0112/UGATIT' target='_blank'>Github Repo</a></p>" |
|
|
|
iface = gr.Interface(inference, inputs=gr.inputs.Image(type="file"), outputs=gr.outputs.Image(type="pil"),enable_queue=True,title=title,article=article,description=description) |
|
iface.launch() |