File size: 6,008 Bytes
a92eac6
14d90f9
a92eac6
fa33312
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a9d3d
497e471
fa33312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497e471
 
 
a2a9d3d
fa33312
 
 
 
 
 
 
f493074
 
fa33312
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
os.system('pip install gradio==2.3.0a0')
os.system('pip freeze')
import torch
from PIL import Image
import requests
import torchvision.transforms as T
import matplotlib.pyplot as plt
from collections import defaultdict
import torch.nn.functional as F
import numpy as np
from skimage.measure import find_contours

from matplotlib import patches,  lines
from matplotlib.patches import Polygon
import gradio as gr

torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2014/03/04/15/10/elephants-279505_1280.jpg', 'elephant.jpg')

torch.set_grad_enabled(False);
# standard PyTorch mean-std input image normalization
transform = T.Compose([
    T.Resize(800),
    T.ToTensor(),
    T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
         (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=1)

def rescale_bboxes(out_bbox, size):
    img_w, img_h = size
    b = box_cxcywh_to_xyxy(out_bbox)
    b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
    return b
# colors for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
          [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]

def apply_mask(image, mask, color, alpha=0.5):
    """Apply the given mask to the image.
    """
    for c in range(3):
        image[:, :, c] = np.where(mask == 1,
                                  image[:, :, c] *
                                  (1 - alpha) + alpha * color[c] * 255,
                                  image[:, :, c])
    return image

def plot_results(pil_img, scores, boxes, labels, masks=None):
    plt.figure(figsize=(16,10))
    np_image = np.array(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    if masks is None:
      masks = [None for _ in range(len(scores))]
    assert len(scores) == len(boxes) == len(labels) == len(masks)
    for s, (xmin, ymin, xmax, ymax), l, mask, c in zip(scores, boxes.tolist(), labels, masks, colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
                                   fill=False, color=c, linewidth=3))
        text = f'{l}: {s:0.2f}'
        ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='white', alpha=0.8))

        if mask is None:
          continue
        np_image = apply_mask(np_image, mask, c)

        padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
        padded_mask[1:-1, 1:-1] = mask
        contours = find_contours(padded_mask, 0.5)
        for verts in contours:
          # Subtract the padding and flip (y, x) to (x, y)
          verts = np.fliplr(verts) - 1
          p = Polygon(verts, facecolor="none", edgecolor=c)
          ax.add_patch(p)


    plt.imshow(np_image)
    plt.axis('off')
    plt.savefig('foo.png',bbox_inches='tight')
    return 'foo.png'


def add_res(results, ax, color='green'):
    #for tt in results.values():
    if True:
        bboxes = results['boxes']
        labels = results['labels']
        scores = results['scores']
        #keep = scores >= 0.0
        #bboxes = bboxes[keep].tolist()
        #labels = labels[keep].tolist()
        #scores = scores[keep].tolist()
    #print(torchvision.ops.box_iou(tt['boxes'].cpu().detach(), torch.as_tensor([[xmin, ymin, xmax, ymax]])))
    
    colors = ['purple', 'yellow', 'red', 'green', 'orange', 'pink']
    
    for i, (b, ll, ss) in enumerate(zip(bboxes, labels, scores)):
        ax.add_patch(plt.Rectangle((b[0], b[1]), b[2] - b[0], b[3] - b[1], fill=False, color=colors[i], linewidth=3))
        cls_name = ll if isinstance(ll,str) else CLASSES[ll]
        text = f'{cls_name}: {ss:.2f}'
        print(text)
        ax.text(b[0], b[1], text, fontsize=15, bbox=dict(facecolor='white', alpha=0.8))
model, postprocessor = torch.hub.load('ashkamath/mdetr:main', 'mdetr_efficientnetB5', pretrained=True, return_postprocessor=True)
model = model.cpu()
model.eval();


def plot_inference(im, caption):
  # mean-std normalize the input image (batch-size: 1)
  img = transform(im).unsqueeze(0).cpu()

  # propagate through the model
  memory_cache = model(img, [caption], encode_and_save=True)
  outputs = model(img, [caption], encode_and_save=False, memory_cache=memory_cache)

  # keep only predictions with 0.7+ confidence
  probas = 1 - outputs['pred_logits'].softmax(-1)[0, :, -1].cpu()
  keep = (probas > 0.7).cpu()

  # convert boxes from [0; 1] to image scales
  bboxes_scaled = rescale_bboxes(outputs['pred_boxes'].cpu()[0, keep], im.size)

  # Extract the text spans predicted by each box
  positive_tokens = (outputs["pred_logits"].cpu()[0, keep].softmax(-1) > 0.1).nonzero().tolist()
  predicted_spans = defaultdict(str)
  for tok in positive_tokens:
    item, pos = tok
    if pos < 255:
        span = memory_cache["tokenized"].token_to_chars(0, pos)
        predicted_spans [item] += " " + caption[span.start:span.end]

  labels = [predicted_spans [k] for k in sorted(list(predicted_spans .keys()))]
  return plot_results(im, probas[keep], bboxes_scaled, labels)
  


title = "MDETR"
description = "Gradio demo for MDETR: Modulated Detection for End-to-End Multi-Modal Understanding. To use it, simply upload your image and add text, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.12763'>MDETR: Modulated Detection for End-to-End Multi-Modal Understanding</a> | <a href='https://github.com/ashkamath/mdetr'>Github Repo</a></p>"
examples =[['elephant.jpg','baby elephant']]
gr.Interface(
    plot_inference, 
    [gr.inputs.Image(type="pil", label="Input"), gr.inputs.Textbox(label="input text")], 
    gr.outputs.Image(type="file", label="Output"),
    title=title,
    description=description,
    article=article,
    examples=examples,
    enable_queue=True
    ).launch(debug=True)