Spaces:
Runtime error
Runtime error
File size: 6,008 Bytes
a92eac6 14d90f9 a92eac6 fa33312 a2a9d3d 497e471 fa33312 497e471 a2a9d3d fa33312 f493074 fa33312 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
os.system('pip install gradio==2.3.0a0')
os.system('pip freeze')
import torch
from PIL import Image
import requests
import torchvision.transforms as T
import matplotlib.pyplot as plt
from collections import defaultdict
import torch.nn.functional as F
import numpy as np
from skimage.measure import find_contours
from matplotlib import patches, lines
from matplotlib.patches import Polygon
import gradio as gr
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2014/03/04/15/10/elephants-279505_1280.jpg', 'elephant.jpg')
torch.set_grad_enabled(False);
# standard PyTorch mean-std input image normalization
transform = T.Compose([
T.Resize(800),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
# colors for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
def apply_mask(image, mask, color, alpha=0.5):
"""Apply the given mask to the image.
"""
for c in range(3):
image[:, :, c] = np.where(mask == 1,
image[:, :, c] *
(1 - alpha) + alpha * color[c] * 255,
image[:, :, c])
return image
def plot_results(pil_img, scores, boxes, labels, masks=None):
plt.figure(figsize=(16,10))
np_image = np.array(pil_img)
ax = plt.gca()
colors = COLORS * 100
if masks is None:
masks = [None for _ in range(len(scores))]
assert len(scores) == len(boxes) == len(labels) == len(masks)
for s, (xmin, ymin, xmax, ymax), l, mask, c in zip(scores, boxes.tolist(), labels, masks, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color=c, linewidth=3))
text = f'{l}: {s:0.2f}'
ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='white', alpha=0.8))
if mask is None:
continue
np_image = apply_mask(np_image, mask, c)
padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
padded_mask[1:-1, 1:-1] = mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
# Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
p = Polygon(verts, facecolor="none", edgecolor=c)
ax.add_patch(p)
plt.imshow(np_image)
plt.axis('off')
plt.savefig('foo.png',bbox_inches='tight')
return 'foo.png'
def add_res(results, ax, color='green'):
#for tt in results.values():
if True:
bboxes = results['boxes']
labels = results['labels']
scores = results['scores']
#keep = scores >= 0.0
#bboxes = bboxes[keep].tolist()
#labels = labels[keep].tolist()
#scores = scores[keep].tolist()
#print(torchvision.ops.box_iou(tt['boxes'].cpu().detach(), torch.as_tensor([[xmin, ymin, xmax, ymax]])))
colors = ['purple', 'yellow', 'red', 'green', 'orange', 'pink']
for i, (b, ll, ss) in enumerate(zip(bboxes, labels, scores)):
ax.add_patch(plt.Rectangle((b[0], b[1]), b[2] - b[0], b[3] - b[1], fill=False, color=colors[i], linewidth=3))
cls_name = ll if isinstance(ll,str) else CLASSES[ll]
text = f'{cls_name}: {ss:.2f}'
print(text)
ax.text(b[0], b[1], text, fontsize=15, bbox=dict(facecolor='white', alpha=0.8))
model, postprocessor = torch.hub.load('ashkamath/mdetr:main', 'mdetr_efficientnetB5', pretrained=True, return_postprocessor=True)
model = model.cpu()
model.eval();
def plot_inference(im, caption):
# mean-std normalize the input image (batch-size: 1)
img = transform(im).unsqueeze(0).cpu()
# propagate through the model
memory_cache = model(img, [caption], encode_and_save=True)
outputs = model(img, [caption], encode_and_save=False, memory_cache=memory_cache)
# keep only predictions with 0.7+ confidence
probas = 1 - outputs['pred_logits'].softmax(-1)[0, :, -1].cpu()
keep = (probas > 0.7).cpu()
# convert boxes from [0; 1] to image scales
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'].cpu()[0, keep], im.size)
# Extract the text spans predicted by each box
positive_tokens = (outputs["pred_logits"].cpu()[0, keep].softmax(-1) > 0.1).nonzero().tolist()
predicted_spans = defaultdict(str)
for tok in positive_tokens:
item, pos = tok
if pos < 255:
span = memory_cache["tokenized"].token_to_chars(0, pos)
predicted_spans [item] += " " + caption[span.start:span.end]
labels = [predicted_spans [k] for k in sorted(list(predicted_spans .keys()))]
return plot_results(im, probas[keep], bboxes_scaled, labels)
title = "MDETR"
description = "Gradio demo for MDETR: Modulated Detection for End-to-End Multi-Modal Understanding. To use it, simply upload your image and add text, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.12763'>MDETR: Modulated Detection for End-to-End Multi-Modal Understanding</a> | <a href='https://github.com/ashkamath/mdetr'>Github Repo</a></p>"
examples =[['elephant.jpg','baby elephant']]
gr.Interface(
plot_inference,
[gr.inputs.Image(type="pil", label="Input"), gr.inputs.Textbox(label="input text")],
gr.outputs.Image(type="file", label="Output"),
title=title,
description=description,
article=article,
examples=examples,
enable_queue=True
).launch(debug=True) |