lama / configs /training /data /abl-02-thin-bb.yaml
AK391
files
d380b77
raw
history blame
3.7 kB
# @package _group_
# try to resemble mask generation of DeepFill v2
# official tf version: https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py#L168
# pytorch version: https://github.com/zhaoyuzhi/deepfillv2/blob/62dad2c601400e14d79f4d1e090c2effcb9bf3eb/deepfillv2/dataset.py#L40
# another unofficial pytorch version: https://github.com/avalonstrel/GatedConvolution/blob/master/config/inpaint.yml
# they are a bit different, official version has slightly larger masks
batch_size: 10
val_batch_size: 2
num_workers: 3
train:
indir: ${location.data_root_dir}/train
out_size: 256
mask_gen_kwargs: # probabilities do not need to sum to 1, they are re-normalized in mask generator
irregular_proba: 1
irregular_kwargs:
max_angle: 4
max_len: 80 # math.sqrt(H*H+W*W) / 8 + math.sqrt(H*H+W*W) / 16 https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py#L189
max_width: 40
max_times: 12
min_times: 4
box_proba: 1
box_kwargs:
margin: 0
bbox_min_size: 30
bbox_max_size: 128
max_times: 1
min_times: 1
segm_proba: 0 # not working yet due to RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
transform_variant: default
dataloader_kwargs:
batch_size: ${data.batch_size}
shuffle: True
num_workers: ${data.num_workers}
val:
indir: ${location.data_root_dir}/val
img_suffix: .png
dataloader_kwargs:
batch_size: ${data.val_batch_size}
shuffle: False
num_workers: ${data.num_workers}
#extra_val:
# random_thin_256:
# indir: ${location.data_root_dir}/extra_val/random_thin_256
# img_suffix: .png
# dataloader_kwargs:
# batch_size: ${data.val_batch_size}
# shuffle: False
# num_workers: ${data.num_workers}
# random_medium_256:
# indir: ${location.data_root_dir}/extra_val/random_medium_256
# img_suffix: .png
# dataloader_kwargs:
# batch_size: ${data.val_batch_size}
# shuffle: False
# num_workers: ${data.num_workers}
# random_thick_256:
# indir: ${location.data_root_dir}/extra_val/random_thick_256
# img_suffix: .png
# dataloader_kwargs:
# batch_size: ${data.val_batch_size}
# shuffle: False
# num_workers: ${data.num_workers}
# random_thin_512:
# indir: ${location.data_root_dir}/extra_val/random_thin_512
# img_suffix: .png
# dataloader_kwargs:
# batch_size: ${data.val_batch_size}
# shuffle: False
# num_workers: ${data.num_workers}
# random_medium_512:
# indir: ${location.data_root_dir}/extra_val/random_medium_512
# img_suffix: .png
# dataloader_kwargs:
# batch_size: ${data.val_batch_size}
# shuffle: False
# num_workers: ${data.num_workers}
# random_thick_512:
# indir: ${location.data_root_dir}/extra_val/random_thick_512
# img_suffix: .png
# dataloader_kwargs:
# batch_size: ${data.val_batch_size}
# shuffle: False
# num_workers: ${data.num_workers}
# segm_256:
# indir: ${location.data_root_dir}/extra_val/segm_256
# img_suffix: .png
# dataloader_kwargs:
# batch_size: ${data.val_batch_size}
# shuffle: False
# num_workers: ${data.num_workers}
# segm_512:
# indir: ${location.data_root_dir}/extra_val/segm_512
# img_suffix: .png
# dataloader_kwargs:
# batch_size: ${data.val_batch_size}
# shuffle: False
# num_workers: ${data.num_workers}
visual_test:
indir: ${location.data_root_dir}/visual_test
img_suffix: _input.png
pad_out_to_modulo: 32
dataloader_kwargs:
batch_size: 1
shuffle: False
num_workers: ${data.num_workers}