Spaces:
Runtime error
Runtime error
File size: 6,108 Bytes
06a6e91 eacc26a 6123d43 06a6e91 6123d43 eacc26a 6123d43 eacc26a 836daad 6123d43 eacc26a 836daad eacc26a 6123d43 30994c1 eacc26a 30994c1 6123d43 836daad 6123d43 836daad eacc26a 6123d43 eacc26a 6123d43 eacc26a a361f34 6123d43 eacc26a 836daad a361f34 2cde650 6123d43 30994c1 2cde650 30994c1 2cde650 a6b51c5 eacc26a 836daad a361f34 2cde650 6123d43 a6b51c5 6123d43 eacc26a a6b51c5 6123d43 eacc26a 836daad eacc26a 6123d43 30994c1 eacc26a 30994c1 6123d43 836daad a6b51c5 836daad 6123d43 836daad eacc26a 6123d43 2cde650 6123d43 30994c1 2cde650 30994c1 a361f34 06a6e91 eacc26a 06a6e91 eacc26a 06a6e91 eacc26a 836daad 2cde650 eacc26a 836daad eacc26a 2cde650 eacc26a a6b51c5 eacc26a 836daad eacc26a a6b51c5 836daad eacc26a 57e4050 30994c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import os
from lumaai import AsyncLumaAI
import asyncio
import aiohttp
async def generate_video(api_key, prompt, loop=False, aspect_ratio="16:9", progress=gr.Progress()):
client = AsyncLumaAI(auth_token=api_key)
progress(0, desc="Initiating video generation...")
generation = await client.generations.create(
prompt=prompt,
loop=loop,
aspect_ratio=aspect_ratio
)
progress(0.1, desc="Video generation started. Waiting for completion...")
# Poll for completion
start_time = asyncio.get_event_loop().time()
while True:
status = await client.generations.get(id=generation.id)
if status.state == "completed":
break
elif status.state == "failed":
raise Exception("Video generation failed")
# Update progress based on time elapsed (assuming 60 seconds total)
elapsed_time = asyncio.get_event_loop().time() - start_time
progress_value = min(0.1 + (elapsed_time / 60) * 0.8, 0.9)
progress(progress_value, desc="Generating video...")
await asyncio.sleep(5)
progress(0.9, desc="Downloading generated video...")
# Download the video
video_url = status.assets.video
async with aiohttp.ClientSession() as session:
async with session.get(video_url) as resp:
if resp.status == 200:
file_name = f"luma_ai_generated_{generation.id}.mp4"
with open(file_name, 'wb') as fd:
while True:
chunk = await resp.content.read(1024)
if not chunk:
break
fd.write(chunk)
progress(1.0, desc="Video generation complete!")
return file_name
async def text_to_video(api_key, prompt, loop, aspect_ratio, progress=gr.Progress()):
if not api_key:
raise gr.Error("Please enter your Luma AI API key.")
try:
video_path = await generate_video(api_key, prompt, loop, aspect_ratio, progress)
return video_path, ""
except Exception as e:
return None, f"An error occurred: {str(e)}"
async def image_to_video(api_key, prompt, image_url, loop, aspect_ratio, progress=gr.Progress()):
if not api_key:
raise gr.Error("Please enter your Luma AI API key.")
try:
client = AsyncLumaAI(auth_token=api_key)
progress(0, desc="Initiating video generation from image...")
generation = await client.generations.create(
prompt=prompt,
loop=loop,
aspect_ratio=aspect_ratio,
keyframes={
"frame0": {
"type": "image",
"url": image_url
}
}
)
progress(0.1, desc="Video generation started. Waiting for completion...")
# Poll for completion
start_time = asyncio.get_event_loop().time()
while True:
status = await client.generations.get(id=generation.id)
if status.state == "completed":
break
elif status.state == "failed":
raise Exception("Video generation failed")
# Update progress based on time elapsed (assuming 60 seconds total)
elapsed_time = asyncio.get_event_loop().time() - start_time
progress_value = min(0.1 + (elapsed_time / 60) * 0.8, 0.9)
progress(progress_value, desc="Generating video...")
await asyncio.sleep(5)
progress(0.9, desc="Downloading generated video...")
# Download the video
video_url = status.assets.video
async with aiohttp.ClientSession() as session:
async with session.get(video_url) as resp:
if resp.status == 200:
file_name = f"luma_ai_generated_{generation.id}.mp4"
with open(file_name, 'wb') as fd:
while True:
chunk = await resp.content.read(1024)
if not chunk:
break
fd.write(chunk)
progress(1.0, desc="Video generation complete!")
return file_name, ""
except Exception as e:
return None, f"An error occurred: {str(e)}"
with gr.Blocks() as demo:
gr.Markdown("# Luma AI Text-to-Video Demo")
api_key = gr.Textbox(label="Luma AI API Key", type="password")
with gr.Tab("Text to Video"):
prompt = gr.Textbox(label="Prompt")
generate_btn = gr.Button("Generate Video")
video_output = gr.Video(label="Generated Video")
error_output = gr.Textbox(label="Error Messages", visible=True)
with gr.Accordion("Advanced Options", open=False):
loop = gr.Checkbox(label="Loop", value=False)
aspect_ratio = gr.Dropdown(label="Aspect Ratio", choices=["16:9", "1:1", "9:16", "4:3", "3:4"], value="16:9")
generate_btn.click(
text_to_video,
inputs=[api_key, prompt, loop, aspect_ratio],
outputs=[video_output, error_output]
)
with gr.Tab("Image to Video"):
img_prompt = gr.Textbox(label="Prompt")
img_url = gr.Textbox(label="Image URL")
img_generate_btn = gr.Button("Generate Video from Image")
img_video_output = gr.Video(label="Generated Video")
img_error_output = gr.Textbox(label="Error Messages", visible=True)
with gr.Accordion("Advanced Options", open=False):
img_loop = gr.Checkbox(label="Loop", value=False)
img_aspect_ratio = gr.Dropdown(label="Aspect Ratio", choices=["16:9", "1:1", "9:16", "4:3", "3:4"], value="16:9")
img_generate_btn.click(
image_to_video,
inputs=[api_key, img_prompt, img_url, img_loop, img_aspect_ratio],
outputs=[img_video_output, img_error_output]
)
demo.queue().launch(share=True) |