Spaces:
Runtime error
Runtime error
Solve unexpected keyword argument 'predict_epsilon' #37
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
@@ -6,6 +7,7 @@ import utils
|
|
6 |
import datetime
|
7 |
import time
|
8 |
import psutil
|
|
|
9 |
|
10 |
start_time = time.time()
|
11 |
is_colab = utils.is_google_colab()
|
@@ -35,7 +37,6 @@ scheduler = DPMSolverMultistepScheduler(
|
|
35 |
beta_schedule="scaled_linear",
|
36 |
num_train_timesteps=1000,
|
37 |
trained_betas=None,
|
38 |
-
predict_epsilon=True,
|
39 |
thresholding=False,
|
40 |
algorithm_type="dpmsolver++",
|
41 |
solver_type="midpoint",
|
@@ -52,7 +53,7 @@ current_model = models[1] if is_colab else models[0]
|
|
52 |
current_model_path = current_model.path
|
53 |
|
54 |
if is_colab:
|
55 |
-
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=
|
56 |
|
57 |
else: # download all models
|
58 |
print(f"{datetime.datetime.now()} Downloading vae...")
|
|
|
1 |
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
|
2 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
from PIL import Image
|
|
|
7 |
import datetime
|
8 |
import time
|
9 |
import psutil
|
10 |
+
from transformers import CLIPFeatureExtractor
|
11 |
|
12 |
start_time = time.time()
|
13 |
is_colab = utils.is_google_colab()
|
|
|
37 |
beta_schedule="scaled_linear",
|
38 |
num_train_timesteps=1000,
|
39 |
trained_betas=None,
|
|
|
40 |
thresholding=False,
|
41 |
algorithm_type="dpmsolver++",
|
42 |
solver_type="midpoint",
|
|
|
53 |
current_model_path = current_model.path
|
54 |
|
55 |
if is_colab:
|
56 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16),feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"))
|
57 |
|
58 |
else: # download all models
|
59 |
print(f"{datetime.datetime.now()} Downloading vae...")
|