akhaliq3
spaces demo
2b7bf83
raw
history blame
7.06 kB
#!/bin/bash
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
. ./cmd.sh || exit 1;
. ./path.sh || exit 1;
# basic settings
stage=-1 # stage to start
stop_stage=100 # stage to stop
verbose=1 # verbosity level (lower is less info)
n_gpus=0 # number of gpus in training
n_jobs=2 # number of parallel jobs in feature extraction
# NOTE(kan-bayashi): renamed to conf to avoid conflict in parse_options.sh
conf=conf/parallel_wavegan.v1.debug.yaml
# directory path setting
download_dir=downloads # direcotry to save downloaded files
dumpdir=dump # directory to dump features
# training related setting
tag="" # tag for directory to save model
resume="" # checkpoint path to resume training
# (e.g. <path>/<to>/checkpoint-10000steps.pkl)
# decoding related setting
checkpoint="" # checkpoint path to be used for decoding
# if not provided, the latest one will be used
# (e.g. <path>/<to>/checkpoint-400000steps.pkl)
# shellcheck disable=SC1091
. utils/parse_options.sh || exit 1;
train_set="train_nodev" # name of training data directory
dev_set="dev" # name of development data direcotry
eval_set="eval" # name of evaluation data direcotry
set -euo pipefail
if [ "${stage}" -le -1 ] && [ "${stop_stage}" -ge -1 ]; then
echo "Stage -1: Data download"
local/data_download.sh "${download_dir}"
fi
if [ "${stage}" -le 0 ] && [ "${stop_stage}" -ge 0 ]; then
echo "Stage 0: Data preparation"
local/data_prep.sh \
--train_set "${train_set}" \
--dev_set "${dev_set}" \
--eval_set "${eval_set}" \
"${download_dir}/waves_yesno" data
fi
stats_ext=$(grep -q "hdf5" <(yq ".format" "${conf}") && echo "h5" || echo "npy")
if [ "${stage}" -le 1 ] && [ "${stop_stage}" -ge 1 ]; then
echo "Stage 1: Feature extraction"
# extract raw features
pids=()
for name in "${train_set}" "${dev_set}" "${eval_set}"; do
(
[ ! -e "${dumpdir}/${name}/raw" ] && mkdir -p "${dumpdir}/${name}/raw"
echo "Feature extraction start. See the progress via ${dumpdir}/${name}/raw/preprocessing.*.log."
utils/make_subset_data.sh "data/${name}" "${n_jobs}" "${dumpdir}/${name}/raw"
${train_cmd} JOB=1:${n_jobs} "${dumpdir}/${name}/raw/preprocessing.JOB.log" \
parallel-wavegan-preprocess \
--config "${conf}" \
--scp "${dumpdir}/${name}/raw/wav.JOB.scp" \
--dumpdir "${dumpdir}/${name}/raw/dump.JOB" \
--verbose "${verbose}"
echo "Successfully finished feature extraction of ${name} set."
) &
pids+=($!)
done
i=0; for pid in "${pids[@]}"; do wait "${pid}" || ((++i)); done
[ "${i}" -gt 0 ] && echo "$0: ${i} background jobs are failed." && exit 1;
echo "Successfully finished feature extraction."
# calculate statistics for normalization
echo "Statistics computation start. See the progress via ${dumpdir}/${train_set}/compute_statistics.log."
${train_cmd} "${dumpdir}/${train_set}/compute_statistics.log" \
parallel-wavegan-compute-statistics \
--config "${conf}" \
--rootdir "${dumpdir}/${train_set}/raw" \
--dumpdir "${dumpdir}/${train_set}" \
--verbose "${verbose}"
echo "Successfully finished calculation of statistics."
# normalize and dump them
pids=()
for name in "${train_set}" "${dev_set}" "${eval_set}"; do
(
[ ! -e "${dumpdir}/${name}/norm" ] && mkdir -p "${dumpdir}/${name}/norm"
echo "Nomalization start. See the progress via ${dumpdir}/${name}/norm/normalize.*.log."
${train_cmd} JOB=1:${n_jobs} "${dumpdir}/${name}/norm/normalize.JOB.log" \
parallel-wavegan-normalize \
--config "${conf}" \
--stats "${dumpdir}/${train_set}/stats.${stats_ext}" \
--rootdir "${dumpdir}/${name}/raw/dump.JOB" \
--dumpdir "${dumpdir}/${name}/norm/dump.JOB" \
--verbose "${verbose}"
echo "Successfully finished normalization of ${name} set."
) &
pids+=($!)
done
i=0; for pid in "${pids[@]}"; do wait "${pid}" || ((++i)); done
[ "${i}" -gt 0 ] && echo "$0: ${i} background jobs are failed." && exit 1;
echo "Successfully finished normalization."
fi
if [ -z "${tag}" ]; then
expdir="exp/${train_set}_yesno_$(basename "${conf}" .yaml)"
else
expdir="exp/${train_set}_yesno_${tag}"
fi
if [ "${stage}" -le 2 ] && [ "${stop_stage}" -ge 2 ]; then
echo "Stage 2: Network training"
[ ! -e "${expdir}" ] && mkdir -p "${expdir}"
cp "${dumpdir}/${train_set}/stats.${stats_ext}" "${expdir}"
if [ "${n_gpus}" -gt 1 ]; then
train="python -m parallel_wavegan.distributed.launch --nproc_per_node ${n_gpus} -c parallel-wavegan-train"
else
train="parallel-wavegan-train"
fi
echo "Training start. See the progress via ${expdir}/train.log."
${cuda_cmd} --gpu "${n_gpus}" "${expdir}/train.log" \
${train} \
--config "${conf}" \
--train-dumpdir "${dumpdir}/${train_set}/norm" \
--dev-dumpdir "${dumpdir}/${dev_set}/norm" \
--outdir "${expdir}" \
--resume "${resume}" \
--verbose "${verbose}"
echo "Successfully finished training."
fi
if [ "${stage}" -le 3 ] && [ "${stop_stage}" -ge 3 ]; then
echo "Stage 3: Network decoding"
# shellcheck disable=SC2012
[ -z "${checkpoint}" ] && checkpoint="$(ls -dt "${expdir}"/*.pkl | head -1 || true)"
outdir="${expdir}/wav/$(basename "${checkpoint}" .pkl)"
pids=()
for name in "${dev_set}" "${eval_set}"; do
(
[ ! -e "${outdir}/${name}" ] && mkdir -p "${outdir}/${name}"
[ "${n_gpus}" -gt 1 ] && n_gpus=1
echo "Decoding start. See the progress via ${outdir}/${name}/decode.log."
${cuda_cmd} --gpu "${n_gpus}" "${outdir}/${name}/decode.log" \
parallel-wavegan-decode \
--dumpdir "${dumpdir}/${name}/norm" \
--checkpoint "${checkpoint}" \
--outdir "${outdir}/${name}" \
--verbose "${verbose}"
echo "Successfully finished decoding of ${name} set."
# NOTE(kan-bayashi): Extra decoding for debugging
echo "Decoding start. See the progress via ${outdir}/${name}/decode.log."
${cuda_cmd} --gpu "${n_gpus}" "${outdir}/${name}/decode.log" \
parallel-wavegan-decode \
--normalize-before \
--dumpdir "${dumpdir}/${name}/raw" \
--checkpoint "${checkpoint}" \
--outdir "${outdir}/${name}" \
--verbose "${verbose}"
echo "Successfully finished decoding of ${name} set."
) &
pids+=($!)
done
i=0; for pid in "${pids[@]}"; do wait "${pid}" || ((++i)); done
[ "${i}" -gt 0 ] && echo "$0: ${i} background jobs are failed." && exit 1;
echo "Successfully finished decoding."
fi
echo "Finished."