Spaces:
Runtime error
Runtime error
# This is the configuration file for LibriTTS dataset. | |
# This configuration is based on StyleMelGAN paper but | |
# uses MSE loss instead of Hinge loss. And I found that | |
# batch_size = 8 is also working good. So maybe if you | |
# want to accelerate the training, you can reduce the | |
# batch size (e.g. 8 or 16). Upsampling scales is modified | |
# to fit the shift size 300 pt. | |
########################################################### | |
# FEATURE EXTRACTION SETTING # | |
########################################################### | |
sampling_rate: 24000 # Sampling rate. | |
fft_size: 2048 # FFT size. | |
hop_size: 300 # Hop size. | |
win_length: 1200 # Window length. | |
# If set to null, it will be the same as fft_size. | |
window: "hann" # Window function. | |
num_mels: 80 # Number of mel basis. | |
fmin: 80 # Minimum freq in mel basis calculation. | |
fmax: 7600 # Maximum frequency in mel basis calculation. | |
global_gain_scale: 1.0 # Will be multiplied to all of waveform. | |
trim_silence: false # Whether to trim the start and end of silence. | |
trim_threshold_in_db: 60 # Need to tune carefully if the recording is not good. | |
trim_frame_size: 1024 # Frame size in trimming. | |
trim_hop_size: 256 # Hop size in trimming. | |
format: "hdf5" # Feature file format. " npy " or " hdf5 " is supported. | |
########################################################### | |
# GENERATOR NETWORK ARCHITECTURE SETTING # | |
########################################################### | |
generator_type: "StyleMelGANGenerator" # Generator type. | |
generator_params: | |
in_channels: 128 | |
aux_channels: 80 | |
channels: 64 | |
out_channels: 1 | |
kernel_size: 9 | |
dilation: 2 | |
bias: True | |
noise_upsample_scales: [10, 2, 2, 2] | |
noise_upsample_activation: "LeakyReLU" | |
noise_upsample_activation_params: | |
negative_slope: 0.2 | |
upsample_scales: [5, 1, 5, 1, 3, 1, 2, 2, 1] | |
upsample_mode: "nearest" | |
gated_function: "softmax" | |
use_weight_norm: True | |
########################################################### | |
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING # | |
########################################################### | |
discriminator_type: "StyleMelGANDiscriminator" # Discriminator type. | |
discriminator_params: | |
repeats: 4 | |
window_sizes: [512, 1024, 2048, 4096] | |
pqmf_params: | |
- [1, None, None, None] | |
- [2, 62, 0.26700, 9.0] | |
- [4, 62, 0.14200, 9.0] | |
- [8, 62, 0.07949, 9.0] | |
discriminator_params: | |
out_channels: 1 | |
kernel_sizes: [5, 3] | |
channels: 16 | |
max_downsample_channels: 512 | |
bias: True | |
downsample_scales: [4, 4, 4, 1] | |
nonlinear_activation: "LeakyReLU" | |
nonlinear_activation_params: | |
negative_slope: 0.2 | |
use_weight_norm: True | |
########################################################### | |
# STFT LOSS SETTING # | |
########################################################### | |
stft_loss_params: | |
fft_sizes: [1024, 2048, 512] # List of FFT size for STFT-based loss. | |
hop_sizes: [120, 240, 50] # List of hop size for STFT-based loss | |
win_lengths: [600, 1200, 240] # List of window length for STFT-based loss. | |
window: "hann_window" # Window function for STFT-based loss | |
lambda_aux: 1.0 # Loss balancing coefficient for aux loss. | |
########################################################### | |
# ADVERSARIAL LOSS SETTING # | |
########################################################### | |
lambda_adv: 1.0 # Loss balancing coefficient for adv loss. | |
generator_adv_loss_params: | |
average_by_discriminators: false # Whether to average loss by #discriminators. | |
discriminator_adv_loss_params: | |
average_by_discriminators: false # Whether to average loss by #discriminators. | |
########################################################### | |
# DATA LOADER SETTING # | |
########################################################### | |
batch_size: 32 # Batch size. | |
batch_max_steps: 24000 # Length of each audio in batch. Make sure dividable by hop_size. | |
pin_memory: true # Whether to pin memory in Pytorch DataLoader. | |
num_workers: 2 # Number of workers in Pytorch DataLoader. | |
remove_short_samples: false # Whether to remove samples the length of which are less than batch_max_steps. | |
allow_cache: false # Whether to allow cache in dataset. If true, it requires cpu memory. | |
########################################################### | |
# OPTIMIZER & SCHEDULER SETTING # | |
########################################################### | |
generator_optimizer_type: Adam | |
generator_optimizer_params: | |
lr: 1.0e-4 | |
betas: [0.5, 0.9] | |
weight_decay: 0.0 | |
generator_scheduler_type: MultiStepLR | |
generator_scheduler_params: | |
gamma: 0.5 | |
milestones: | |
- 100000 | |
- 300000 | |
- 500000 | |
- 700000 | |
- 900000 | |
generator_grad_norm: -1 | |
discriminator_optimizer_type: Adam | |
discriminator_optimizer_params: | |
lr: 2.0e-4 | |
betas: [0.5, 0.9] | |
weight_decay: 0.0 | |
discriminator_scheduler_type: MultiStepLR | |
discriminator_scheduler_params: | |
gamma: 0.5 | |
milestones: | |
- 200000 | |
- 400000 | |
- 600000 | |
- 800000 | |
discriminator_grad_norm: -1 | |
########################################################### | |
# INTERVAL SETTING # | |
########################################################### | |
discriminator_train_start_steps: 100000 # Number of steps to start to train discriminator. | |
train_max_steps: 1500000 # Number of training steps. | |
save_interval_steps: 50000 # Interval steps to save checkpoint. | |
eval_interval_steps: 1000 # Interval steps to evaluate the network. | |
log_interval_steps: 100 # Interval steps to record the training log. | |
########################################################### | |
# OTHER SETTING # | |
########################################################### | |
num_save_intermediate_results: 4 # Number of results to be saved as intermediate results. | |