File size: 6,555 Bytes
2b7bf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/bin/bash

# Copyright 2019 Tomoki Hayashi
#  MIT License (https://opensource.org/licenses/MIT)

. ./cmd.sh || exit 1;
. ./path.sh || exit 1;

# basic settings
stage=-1       # stage to start
stop_stage=100 # stage to stop
verbose=1      # verbosity level (lower is less info)
n_gpus=1       # number of gpus in training
n_jobs=16      # number of parallel jobs in feature extraction

# NOTE(kan-bayashi): renamed to conf to avoid conflict in parse_options.sh
conf=conf/parallel_wavegan.v1.yaml

# directory path setting
download_dir=downloads # direcotry to save downloaded files
dumpdir=dump           # directory to dump features

# training related setting
tag=""     # tag for directory to save model
resume=""  # checkpoint path to resume training
           # (e.g. <path>/<to>/checkpoint-10000steps.pkl)

# decoding related setting
checkpoint="" # checkpoint path to be used for decoding
              # if not provided, the latest one will be used
              # (e.g. <path>/<to>/checkpoint-400000steps.pkl)

# shellcheck disable=SC1091
. utils/parse_options.sh || exit 1;

train_set="train_nodev" # name of training data directory
dev_set="dev"           # name of development data direcotry
eval_set="eval"         # name of evaluation data direcotry

set -euo pipefail

if [ "${stage}" -le -1 ] && [ "${stop_stage}" -ge -1 ]; then
    echo "Stage -1: Data download"
    local/data_download.sh "${download_dir}"
fi

if [ "${stage}" -le 0 ] && [ "${stop_stage}" -ge 0 ]; then
    echo "Stage 0: Data preparation"
    local/data_prep.sh \
        --train_set "${train_set}" \
        --dev_set "${dev_set}" \
        --eval_set "${eval_set}" \
        --shuffle true \
        "${download_dir}/sc_all" data
fi

stats_ext=$(grep -q "hdf5" <(yq ".format" "${conf}") && echo "h5" || echo "npy")
if [ "${stage}" -le 1 ] && [ "${stop_stage}" -ge 1 ]; then
    echo "Stage 1: Feature extraction"
    # extract raw features
    pids=()
    for name in "${train_set}" "${dev_set}" "${eval_set}"; do
    (
        [ ! -e "${dumpdir}/${name}/raw" ] && mkdir -p "${dumpdir}/${name}/raw"
        echo "Feature extraction start. See the progress via ${dumpdir}/${name}/raw/preprocessing.*.log."
        utils/make_subset_data.sh "data/${name}" "${n_jobs}" "${dumpdir}/${name}/raw"
        ${train_cmd} JOB=1:${n_jobs} "${dumpdir}/${name}/raw/preprocessing.JOB.log" \
            parallel-wavegan-preprocess \
                --config "${conf}" \
                --scp "${dumpdir}/${name}/raw/wav.JOB.scp" \
                --dumpdir "${dumpdir}/${name}/raw/dump.JOB" \
                --verbose "${verbose}"
        echo "Successfully finished feature extraction of ${name} set."
    ) &
    pids+=($!)
    done
    i=0; for pid in "${pids[@]}"; do wait "${pid}" || ((++i)); done
    [ "${i}" -gt 0 ] && echo "$0: ${i} background jobs are failed." && exit 1;
    echo "Successfully finished feature extraction."

    # calculate statistics for normalization
    echo "Statistics computation start. See the progress via ${dumpdir}/${train_set}/compute_statistics.log."
    ${train_cmd} "${dumpdir}/${train_set}/compute_statistics.log" \
        parallel-wavegan-compute-statistics \
            --config "${conf}" \
            --rootdir "${dumpdir}/${train_set}/raw" \
            --dumpdir "${dumpdir}/${train_set}" \
            --verbose "${verbose}"
    echo "Successfully finished calculation of statistics."

    # normalize and dump them
    pids=()
    for name in "${train_set}" "${dev_set}" "${eval_set}"; do
    (
        [ ! -e "${dumpdir}/${name}/norm" ] && mkdir -p "${dumpdir}/${name}/norm"
        echo "Nomalization start. See the progress via ${dumpdir}/${name}/norm/normalize.*.log."
        ${train_cmd} JOB=1:${n_jobs} "${dumpdir}/${name}/norm/normalize.JOB.log" \
            parallel-wavegan-normalize \
                --config "${conf}" \
                --stats "${dumpdir}/${train_set}/stats.${stats_ext}" \
                --rootdir "${dumpdir}/${name}/raw/dump.JOB" \
                --dumpdir "${dumpdir}/${name}/norm/dump.JOB" \
                --verbose "${verbose}"
        echo "Successfully finished normalization of ${name} set."
    ) &
    pids+=($!)
    done
    i=0; for pid in "${pids[@]}"; do wait "${pid}" || ((++i)); done
    [ "${i}" -gt 0 ] && echo "$0: ${i} background jobs are failed." && exit 1;
    echo "Successfully finished normalization."
fi

if [ -z "${tag}" ]; then
    expdir="exp/${train_set}_speech_commands_$(basename "${conf}" .yaml)"
else
    expdir="exp/${train_set}_speech_commands_${tag}"
fi
if [ "${stage}" -le 2 ] && [ "${stop_stage}" -ge 2 ]; then
    echo "Stage 2: Network training"
    [ ! -e "${expdir}" ] && mkdir -p "${expdir}"
    cp "${dumpdir}/${train_set}/stats.${stats_ext}" "${expdir}"
    if [ "${n_gpus}" -gt 1 ]; then
        train="python -m parallel_wavegan.distributed.launch --nproc_per_node ${n_gpus} -c parallel-wavegan-train"
    else
        train="parallel-wavegan-train"
    fi
    echo "Training start. See the progress via ${expdir}/train.log."
    ${cuda_cmd} --gpu "${n_gpus}" "${expdir}/train.log" \
        ${train} \
            --config "${conf}" \
            --train-dumpdir "${dumpdir}/${train_set}/norm" \
            --dev-dumpdir "${dumpdir}/${dev_set}/norm" \
            --outdir "${expdir}" \
            --resume "${resume}" \
            --verbose "${verbose}"
    echo "Successfully finished training."
fi

if [ "${stage}" -le 3 ] && [ "${stop_stage}" -ge 3 ]; then
    echo "Stage 3: Network decoding"
    # shellcheck disable=SC2012
    [ -z "${checkpoint}" ] && checkpoint="$(ls -dt "${expdir}"/*.pkl | head -1 || true)"
    outdir="${expdir}/wav/$(basename "${checkpoint}" .pkl)"
    pids=()
    for name in "${dev_set}" "${eval_set}"; do
    (
        [ ! -e "${outdir}/${name}" ] && mkdir -p "${outdir}/${name}"
        [ "${n_gpus}" -gt 1 ] && n_gpus=1
        echo "Decoding start. See the progress via ${outdir}/${name}/decode.log."
        ${cuda_cmd} --gpu "${n_gpus}" "${outdir}/${name}/decode.log" \
            parallel-wavegan-decode \
                --dumpdir "${dumpdir}/${name}/norm" \
                --checkpoint "${checkpoint}" \
                --outdir "${outdir}/${name}" \
                --verbose "${verbose}"
        echo "Successfully finished decoding of ${name} set."
    ) &
    pids+=($!)
    done
    i=0; for pid in "${pids[@]}"; do wait "${pid}" || ((++i)); done
    [ "${i}" -gt 0 ] && echo "$0: ${i} background jobs are failed." && exit 1;
    echo "Successfully finished decoding."
fi
echo "Finished."