File size: 4,805 Bytes
2b7bf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright 2021 Tomoki Hayashi
#  MIT License (https://opensource.org/licenses/MIT)

"""StyleMelGAN's TADEResBlock Modules."""

from functools import partial

import torch


class TADELayer(torch.nn.Module):
    """TADE Layer module."""

    def __init__(
        self,
        in_channels=64,
        aux_channels=80,
        kernel_size=9,
        bias=True,
        upsample_factor=2,
        upsample_mode="nearest",
    ):
        """Initilize TADE layer."""
        super().__init__()
        self.norm = torch.nn.InstanceNorm1d(in_channels)
        self.aux_conv = torch.nn.Sequential(
            torch.nn.Conv1d(
                aux_channels,
                in_channels,
                kernel_size,
                1,
                bias=bias,
                padding=(kernel_size - 1) // 2,
            ),
            # NOTE(kan-bayashi): Use non-linear activation?
        )
        self.gated_conv = torch.nn.Sequential(
            torch.nn.Conv1d(
                in_channels,
                in_channels * 2,
                kernel_size,
                1,
                bias=bias,
                padding=(kernel_size - 1) // 2,
            ),
            # NOTE(kan-bayashi): Use non-linear activation?
        )
        self.upsample = torch.nn.Upsample(
            scale_factor=upsample_factor, mode=upsample_mode
        )

    def forward(self, x, c):
        """Calculate forward propagation.

        Args:
            x (Tensor): Input tensor (B, in_channels, T).
            c (Tensor): Auxiliary input tensor (B, aux_channels, T').

        Returns:
            Tensor: Output tensor (B, in_channels, T * in_upsample_factor).
            Tensor: Upsampled aux tensor (B, in_channels, T * aux_upsample_factor).

        """
        x = self.norm(x)
        c = self.upsample(c)
        c = self.aux_conv(c)
        cg = self.gated_conv(c)
        cg1, cg2 = cg.split(cg.size(1) // 2, dim=1)
        # NOTE(kan-bayashi): Use upsample for noise input here?
        y = cg1 * self.upsample(x) + cg2
        # NOTE(kan-bayashi): Return upsampled aux here?
        return y, c


class TADEResBlock(torch.nn.Module):
    """TADEResBlock module."""

    def __init__(
        self,
        in_channels=64,
        aux_channels=80,
        kernel_size=9,
        dilation=2,
        bias=True,
        upsample_factor=2,
        upsample_mode="nearest",
        gated_function="softmax",
    ):
        """Initialize TADEResBlock module."""
        super().__init__()
        self.tade1 = TADELayer(
            in_channels=in_channels,
            aux_channels=aux_channels,
            kernel_size=kernel_size,
            bias=bias,
            # NOTE(kan-bayashi): Use upsample in the first TADE layer?
            upsample_factor=1,
            upsample_mode=upsample_mode,
        )
        self.gated_conv1 = torch.nn.Conv1d(
            in_channels,
            in_channels * 2,
            kernel_size,
            1,
            bias=bias,
            padding=(kernel_size - 1) // 2,
        )
        self.tade2 = TADELayer(
            in_channels=in_channels,
            aux_channels=in_channels,
            kernel_size=kernel_size,
            bias=bias,
            upsample_factor=upsample_factor,
            upsample_mode=upsample_mode,
        )
        self.gated_conv2 = torch.nn.Conv1d(
            in_channels,
            in_channels * 2,
            kernel_size,
            1,
            bias=bias,
            dilation=dilation,
            padding=(kernel_size - 1) // 2 * dilation,
        )
        self.upsample = torch.nn.Upsample(
            scale_factor=upsample_factor, mode=upsample_mode
        )
        if gated_function == "softmax":
            self.gated_function = partial(torch.softmax, dim=1)
        elif gated_function == "sigmoid":
            self.gated_function = torch.sigmoid
        else:
            raise ValueError(f"{gated_function} is not supported.")

    def forward(self, x, c):
        """Calculate forward propagation.

        Args:
            x (Tensor): Input tensor (B, in_channels, T).
            c (Tensor): Auxiliary input tensor (B, aux_channels, T').

        Returns:
            Tensor: Output tensor (B, in_channels, T * in_upsample_factor).
            Tensor: Upsampled auxirialy tensor (B, in_channels, T * in_upsample_factor).

        """
        residual = x

        x, c = self.tade1(x, c)
        x = self.gated_conv1(x)
        xa, xb = x.split(x.size(1) // 2, dim=1)
        x = self.gated_function(xa) * torch.tanh(xb)

        x, c = self.tade2(x, c)
        x = self.gated_conv2(x)
        xa, xb = x.split(x.size(1) // 2, dim=1)
        x = self.gated_function(xa) * torch.tanh(xb)

        # NOTE(kan-bayashi): Return upsampled aux here?
        return self.upsample(residual) + x, c