File size: 4,929 Bytes
2b7bf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import json
import os
import subprocess
import tempfile
import zipfile
from pathlib import Path

import cog
import kaldiio
import numpy as np
import pyworld as pw
import resampy
import soundfile as sf
import torch

from model_decoder import Decoder_ac
from model_encoder import Encoder, Encoder_lf0
from model_encoder import SpeakerEncoder as Encoder_spk
from spectrogram import logmelspectrogram


def extract_logmel(wav_path, mean, std, sr=16000):
    # wav, fs = librosa.load(wav_path, sr=sr)
    wav, fs = sf.read(wav_path)
    if fs != sr:
        wav = resampy.resample(wav, fs, sr, axis=0)
        fs = sr
    # wav, _ = librosa.effects.trim(wav, top_db=15)
    # duration = len(wav)/fs
    assert fs == 16000
    peak = np.abs(wav).max()
    if peak > 1.0:
        wav /= peak
    mel = logmelspectrogram(
        x=wav,
        fs=fs,
        n_mels=80,
        n_fft=400,
        n_shift=160,
        win_length=400,
        window="hann",
        fmin=80,
        fmax=7600,
    )
    mel = (mel - mean) / (std + 1e-8)
    tlen = mel.shape[0]
    frame_period = 160 / fs * 1000
    f0, timeaxis = pw.dio(wav.astype("float64"), fs, frame_period=frame_period)
    f0 = pw.stonemask(wav.astype("float64"), f0, timeaxis, fs)
    f0 = f0[:tlen].reshape(-1).astype("float32")
    nonzeros_indices = np.nonzero(f0)
    lf0 = f0.copy()
    lf0[nonzeros_indices] = np.log(
        f0[nonzeros_indices]
    )  # for f0(Hz), lf0 > 0 when f0 != 0
    mean, std = np.mean(lf0[nonzeros_indices]), np.std(lf0[nonzeros_indices])
    lf0[nonzeros_indices] = (lf0[nonzeros_indices] - mean) / (std + 1e-8)
    return mel, lf0


class Predictor(cog.Predictor):
    def setup(self):
        """Load models"""
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        checkpoint_path = "VQMIVC-pretrained models/checkpoints/useCSMITrue_useCPMITrue_usePSMITrue_useAmpTrue/VQMIVC-model.ckpt-500.pt"
        mel_stats = np.load("./mel_stats/stats.npy")

        encoder = Encoder(
            in_channels=80, channels=512, n_embeddings=512, z_dim=64, c_dim=256
        )
        encoder_lf0 = Encoder_lf0()
        encoder_spk = Encoder_spk()
        decoder = Decoder_ac(dim_neck=64)
        encoder.to(device)
        encoder_lf0.to(device)
        encoder_spk.to(device)
        decoder.to(device)

        checkpoint = torch.load(
            checkpoint_path, map_location=lambda storage, loc: storage
        )
        encoder.load_state_dict(checkpoint["encoder"])
        encoder_spk.load_state_dict(checkpoint["encoder_spk"])
        decoder.load_state_dict(checkpoint["decoder"])

        encoder.eval()
        encoder_spk.eval()
        decoder.eval()

        self.mean = mel_stats[0]
        self.std = mel_stats[1]
        self.encoder = encoder
        self.encoder_spk = encoder_spk
        self.encoder_lf0 = encoder_lf0
        self.decoder = decoder
        self.device = device

    @cog.input("input_source", type=Path, help="Source voice wav path")
    @cog.input("input_reference", type=Path, help="Reference voice wav path")
    def predict(self, input_source, input_reference):
        """Compute prediction"""
        # inference
        out_dir = Path(tempfile.mkdtemp())
        out_path = out_dir / Path(
            os.path.basename(str(input_source)).split(".")[0] + "_converted_gen.wav"
        )
        src_wav_path = input_source
        ref_wav_path = input_reference
        feat_writer = kaldiio.WriteHelper(
            "ark,scp:{o}.ark,{o}.scp".format(o=str(out_dir) + "/feats.1")
        )
        src_mel, src_lf0 = extract_logmel(src_wav_path, self.mean, self.std)
        ref_mel, _ = extract_logmel(ref_wav_path, self.mean, self.std)

        src_mel = torch.FloatTensor(src_mel.T).unsqueeze(0).to(self.device)
        src_lf0 = torch.FloatTensor(src_lf0).unsqueeze(0).to(self.device)
        ref_mel = torch.FloatTensor(ref_mel.T).unsqueeze(0).to(self.device)
        out_filename = os.path.basename(src_wav_path).split(".")[0]

        with torch.no_grad():
            z, _, _, _ = self.encoder.encode(src_mel)
            lf0_embs = self.encoder_lf0(src_lf0)
            spk_emb = self.encoder_spk(ref_mel)
            output = self.decoder(z, lf0_embs, spk_emb)

            feat_writer[out_filename + "_converted"] = output.squeeze(0).cpu().numpy()
            feat_writer[out_filename + "_source"] = src_mel.squeeze(0).cpu().numpy().T
            feat_writer[out_filename + "_reference"] = (
                ref_mel.squeeze(0).cpu().numpy().T
            )

        feat_writer.close()

        print("synthesize waveform...")
        cmd = [
            "parallel-wavegan-decode",
            "--checkpoint",
            "./vocoder/checkpoint-3000000steps.pkl",
            "--feats-scp",
            f"{str(out_dir)}/feats.1.scp",
            "--outdir",
            str(out_dir),
        ]
        subprocess.call(cmd)

        return out_path