File size: 18,358 Bytes
2b7bf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# -*- coding: utf-8 -*-

# Copyright 2020 Tomoki Hayashi
#  MIT License (https://opensource.org/licenses/MIT)

"""MelGAN Modules."""

import logging

import numpy as np
import torch

from parallel_wavegan.layers import CausalConv1d
from parallel_wavegan.layers import CausalConvTranspose1d
from parallel_wavegan.layers import ResidualStack
from parallel_wavegan.utils import read_hdf5


class MelGANGenerator(torch.nn.Module):
    """MelGAN generator module."""

    def __init__(
        self,
        in_channels=80,
        out_channels=1,
        kernel_size=7,
        channels=512,
        bias=True,
        upsample_scales=[8, 8, 2, 2],
        stack_kernel_size=3,
        stacks=3,
        nonlinear_activation="LeakyReLU",
        nonlinear_activation_params={"negative_slope": 0.2},
        pad="ReflectionPad1d",
        pad_params={},
        use_final_nonlinear_activation=True,
        use_weight_norm=True,
        use_causal_conv=False,
    ):
        """Initialize MelGANGenerator module.

        Args:
            in_channels (int): Number of input channels.
            out_channels (int): Number of output channels.
            kernel_size (int): Kernel size of initial and final conv layer.
            channels (int): Initial number of channels for conv layer.
            bias (bool): Whether to add bias parameter in convolution layers.
            upsample_scales (list): List of upsampling scales.
            stack_kernel_size (int): Kernel size of dilated conv layers in residual stack.
            stacks (int): Number of stacks in a single residual stack.
            nonlinear_activation (str): Activation function module name.
            nonlinear_activation_params (dict): Hyperparameters for activation function.
            pad (str): Padding function module name before dilated convolution layer.
            pad_params (dict): Hyperparameters for padding function.
            use_final_nonlinear_activation (torch.nn.Module): Activation function for the final layer.
            use_weight_norm (bool): Whether to use weight norm.
                If set to true, it will be applied to all of the conv layers.
            use_causal_conv (bool): Whether to use causal convolution.

        """
        super(MelGANGenerator, self).__init__()

        # check hyper parameters is valid
        assert channels >= np.prod(upsample_scales)
        assert channels % (2 ** len(upsample_scales)) == 0
        if not use_causal_conv:
            assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size."

        # add initial layer
        layers = []
        if not use_causal_conv:
            layers += [
                getattr(torch.nn, pad)((kernel_size - 1) // 2, **pad_params),
                torch.nn.Conv1d(in_channels, channels, kernel_size, bias=bias),
            ]
        else:
            layers += [
                CausalConv1d(
                    in_channels,
                    channels,
                    kernel_size,
                    bias=bias,
                    pad=pad,
                    pad_params=pad_params,
                ),
            ]

        for i, upsample_scale in enumerate(upsample_scales):
            # add upsampling layer
            layers += [
                getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params)
            ]
            if not use_causal_conv:
                layers += [
                    torch.nn.ConvTranspose1d(
                        channels // (2 ** i),
                        channels // (2 ** (i + 1)),
                        upsample_scale * 2,
                        stride=upsample_scale,
                        padding=upsample_scale // 2 + upsample_scale % 2,
                        output_padding=upsample_scale % 2,
                        bias=bias,
                    )
                ]
            else:
                layers += [
                    CausalConvTranspose1d(
                        channels // (2 ** i),
                        channels // (2 ** (i + 1)),
                        upsample_scale * 2,
                        stride=upsample_scale,
                        bias=bias,
                    )
                ]

            # add residual stack
            for j in range(stacks):
                layers += [
                    ResidualStack(
                        kernel_size=stack_kernel_size,
                        channels=channels // (2 ** (i + 1)),
                        dilation=stack_kernel_size ** j,
                        bias=bias,
                        nonlinear_activation=nonlinear_activation,
                        nonlinear_activation_params=nonlinear_activation_params,
                        pad=pad,
                        pad_params=pad_params,
                        use_causal_conv=use_causal_conv,
                    )
                ]

        # add final layer
        layers += [
            getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params)
        ]
        if not use_causal_conv:
            layers += [
                getattr(torch.nn, pad)((kernel_size - 1) // 2, **pad_params),
                torch.nn.Conv1d(
                    channels // (2 ** (i + 1)), out_channels, kernel_size, bias=bias
                ),
            ]
        else:
            layers += [
                CausalConv1d(
                    channels // (2 ** (i + 1)),
                    out_channels,
                    kernel_size,
                    bias=bias,
                    pad=pad,
                    pad_params=pad_params,
                ),
            ]
        if use_final_nonlinear_activation:
            layers += [torch.nn.Tanh()]

        # define the model as a single function
        self.melgan = torch.nn.Sequential(*layers)

        # apply weight norm
        if use_weight_norm:
            self.apply_weight_norm()

        # reset parameters
        self.reset_parameters()

        # initialize pqmf for inference
        self.pqmf = None

    def forward(self, c):
        """Calculate forward propagation.

        Args:
            c (Tensor): Input tensor (B, channels, T).

        Returns:
            Tensor: Output tensor (B, 1, T ** prod(upsample_scales)).

        """
        return self.melgan(c)

    def remove_weight_norm(self):
        """Remove weight normalization module from all of the layers."""

        def _remove_weight_norm(m):
            try:
                logging.debug(f"Weight norm is removed from {m}.")
                torch.nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(_remove_weight_norm)

    def apply_weight_norm(self):
        """Apply weight normalization module from all of the layers."""

        def _apply_weight_norm(m):
            if isinstance(m, torch.nn.Conv1d) or isinstance(
                m, torch.nn.ConvTranspose1d
            ):
                torch.nn.utils.weight_norm(m)
                logging.debug(f"Weight norm is applied to {m}.")

        self.apply(_apply_weight_norm)

    def reset_parameters(self):
        """Reset parameters.

        This initialization follows official implementation manner.
        https://github.com/descriptinc/melgan-neurips/blob/master/mel2wav/modules.py

        """

        def _reset_parameters(m):
            if isinstance(m, torch.nn.Conv1d) or isinstance(
                m, torch.nn.ConvTranspose1d
            ):
                m.weight.data.normal_(0.0, 0.02)
                logging.debug(f"Reset parameters in {m}.")

        self.apply(_reset_parameters)

    def register_stats(self, stats):
        """Register stats for de-normalization as buffer.

        Args:
            stats (str): Path of statistics file (".npy" or ".h5").

        """
        assert stats.endswith(".h5") or stats.endswith(".npy")
        if stats.endswith(".h5"):
            mean = read_hdf5(stats, "mean").reshape(-1)
            scale = read_hdf5(stats, "scale").reshape(-1)
        else:
            mean = np.load(stats)[0].reshape(-1)
            scale = np.load(stats)[1].reshape(-1)
        self.register_buffer("mean", torch.from_numpy(mean).float())
        self.register_buffer("scale", torch.from_numpy(scale).float())
        logging.info("Successfully registered stats as buffer.")

    def inference(self, c, normalize_before=False):
        """Perform inference.

        Args:
            c (Union[Tensor, ndarray]): Input tensor (T, in_channels).
            normalize_before (bool): Whether to perform normalization.

        Returns:
            Tensor: Output tensor (T ** prod(upsample_scales), out_channels).

        """
        if not isinstance(c, torch.Tensor):
            c = torch.tensor(c, dtype=torch.float).to(next(self.parameters()).device)
        if normalize_before:
            c = (c - self.mean) / self.scale
        c = self.melgan(c.transpose(1, 0).unsqueeze(0))
        if self.pqmf is not None:
            c = self.pqmf.synthesis(c)
        return c.squeeze(0).transpose(1, 0)


class MelGANDiscriminator(torch.nn.Module):
    """MelGAN discriminator module."""

    def __init__(
        self,
        in_channels=1,
        out_channels=1,
        kernel_sizes=[5, 3],
        channels=16,
        max_downsample_channels=1024,
        bias=True,
        downsample_scales=[4, 4, 4, 4],
        nonlinear_activation="LeakyReLU",
        nonlinear_activation_params={"negative_slope": 0.2},
        pad="ReflectionPad1d",
        pad_params={},
    ):
        """Initilize MelGAN discriminator module.

        Args:
            in_channels (int): Number of input channels.
            out_channels (int): Number of output channels.
            kernel_sizes (list): List of two kernel sizes. The prod will be used for the first conv layer,
                and the first and the second kernel sizes will be used for the last two layers.
                For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15,
                the last two layers' kernel size will be 5 and 3, respectively.
            channels (int): Initial number of channels for conv layer.
            max_downsample_channels (int): Maximum number of channels for downsampling layers.
            bias (bool): Whether to add bias parameter in convolution layers.
            downsample_scales (list): List of downsampling scales.
            nonlinear_activation (str): Activation function module name.
            nonlinear_activation_params (dict): Hyperparameters for activation function.
            pad (str): Padding function module name before dilated convolution layer.
            pad_params (dict): Hyperparameters for padding function.

        """
        super(MelGANDiscriminator, self).__init__()
        self.layers = torch.nn.ModuleList()

        # check kernel size is valid
        assert len(kernel_sizes) == 2
        assert kernel_sizes[0] % 2 == 1
        assert kernel_sizes[1] % 2 == 1

        # add first layer
        self.layers += [
            torch.nn.Sequential(
                getattr(torch.nn, pad)((np.prod(kernel_sizes) - 1) // 2, **pad_params),
                torch.nn.Conv1d(
                    in_channels, channels, np.prod(kernel_sizes), bias=bias
                ),
                getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params),
            )
        ]

        # add downsample layers
        in_chs = channels
        for downsample_scale in downsample_scales:
            out_chs = min(in_chs * downsample_scale, max_downsample_channels)
            self.layers += [
                torch.nn.Sequential(
                    torch.nn.Conv1d(
                        in_chs,
                        out_chs,
                        kernel_size=downsample_scale * 10 + 1,
                        stride=downsample_scale,
                        padding=downsample_scale * 5,
                        groups=in_chs // 4,
                        bias=bias,
                    ),
                    getattr(torch.nn, nonlinear_activation)(
                        **nonlinear_activation_params
                    ),
                )
            ]
            in_chs = out_chs

        # add final layers
        out_chs = min(in_chs * 2, max_downsample_channels)
        self.layers += [
            torch.nn.Sequential(
                torch.nn.Conv1d(
                    in_chs,
                    out_chs,
                    kernel_sizes[0],
                    padding=(kernel_sizes[0] - 1) // 2,
                    bias=bias,
                ),
                getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params),
            )
        ]
        self.layers += [
            torch.nn.Conv1d(
                out_chs,
                out_channels,
                kernel_sizes[1],
                padding=(kernel_sizes[1] - 1) // 2,
                bias=bias,
            ),
        ]

    def forward(self, x):
        """Calculate forward propagation.

        Args:
            x (Tensor): Input noise signal (B, 1, T).

        Returns:
            List: List of output tensors of each layer.

        """
        outs = []
        for f in self.layers:
            x = f(x)
            outs += [x]

        return outs


class MelGANMultiScaleDiscriminator(torch.nn.Module):
    """MelGAN multi-scale discriminator module."""

    def __init__(
        self,
        in_channels=1,
        out_channels=1,
        scales=3,
        downsample_pooling="AvgPool1d",
        # follow the official implementation setting
        downsample_pooling_params={
            "kernel_size": 4,
            "stride": 2,
            "padding": 1,
            "count_include_pad": False,
        },
        kernel_sizes=[5, 3],
        channels=16,
        max_downsample_channels=1024,
        bias=True,
        downsample_scales=[4, 4, 4, 4],
        nonlinear_activation="LeakyReLU",
        nonlinear_activation_params={"negative_slope": 0.2},
        pad="ReflectionPad1d",
        pad_params={},
        use_weight_norm=True,
    ):
        """Initilize MelGAN multi-scale discriminator module.

        Args:
            in_channels (int): Number of input channels.
            out_channels (int): Number of output channels.
            scales (int): Number of multi-scales.
            downsample_pooling (str): Pooling module name for downsampling of the inputs.
            downsample_pooling_params (dict): Parameters for the above pooling module.
            kernel_sizes (list): List of two kernel sizes. The sum will be used for the first conv layer,
                and the first and the second kernel sizes will be used for the last two layers.
            channels (int): Initial number of channels for conv layer.
            max_downsample_channels (int): Maximum number of channels for downsampling layers.
            bias (bool): Whether to add bias parameter in convolution layers.
            downsample_scales (list): List of downsampling scales.
            nonlinear_activation (str): Activation function module name.
            nonlinear_activation_params (dict): Hyperparameters for activation function.
            pad (str): Padding function module name before dilated convolution layer.
            pad_params (dict): Hyperparameters for padding function.
            use_causal_conv (bool): Whether to use causal convolution.

        """
        super(MelGANMultiScaleDiscriminator, self).__init__()
        self.discriminators = torch.nn.ModuleList()

        # add discriminators
        for _ in range(scales):
            self.discriminators += [
                MelGANDiscriminator(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    kernel_sizes=kernel_sizes,
                    channels=channels,
                    max_downsample_channels=max_downsample_channels,
                    bias=bias,
                    downsample_scales=downsample_scales,
                    nonlinear_activation=nonlinear_activation,
                    nonlinear_activation_params=nonlinear_activation_params,
                    pad=pad,
                    pad_params=pad_params,
                )
            ]
        self.pooling = getattr(torch.nn, downsample_pooling)(
            **downsample_pooling_params
        )

        # apply weight norm
        if use_weight_norm:
            self.apply_weight_norm()

        # reset parameters
        self.reset_parameters()

    def forward(self, x):
        """Calculate forward propagation.

        Args:
            x (Tensor): Input noise signal (B, 1, T).

        Returns:
            List: List of list of each discriminator outputs, which consists of each layer output tensors.

        """
        outs = []
        for f in self.discriminators:
            outs += [f(x)]
            x = self.pooling(x)

        return outs

    def remove_weight_norm(self):
        """Remove weight normalization module from all of the layers."""

        def _remove_weight_norm(m):
            try:
                logging.debug(f"Weight norm is removed from {m}.")
                torch.nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(_remove_weight_norm)

    def apply_weight_norm(self):
        """Apply weight normalization module from all of the layers."""

        def _apply_weight_norm(m):
            if isinstance(m, torch.nn.Conv1d) or isinstance(
                m, torch.nn.ConvTranspose1d
            ):
                torch.nn.utils.weight_norm(m)
                logging.debug(f"Weight norm is applied to {m}.")

        self.apply(_apply_weight_norm)

    def reset_parameters(self):
        """Reset parameters.

        This initialization follows official implementation manner.
        https://github.com/descriptinc/melgan-neurips/blob/master/mel2wav/modules.py

        """

        def _reset_parameters(m):
            if isinstance(m, torch.nn.Conv1d) or isinstance(
                m, torch.nn.ConvTranspose1d
            ):
                m.weight.data.normal_(0.0, 0.02)
                logging.debug(f"Reset parameters in {m}.")

        self.apply(_reset_parameters)