Spaces:
Runtime error
Runtime error
File size: 25,862 Bytes
2b7bf83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
# -*- coding: utf-8 -*-
"""HiFi-GAN Modules.
This code is based on https://github.com/jik876/hifi-gan.
"""
import copy
import logging
import numpy as np
import torch
import torch.nn.functional as F
from parallel_wavegan.layers import HiFiGANResidualBlock as ResidualBlock
from parallel_wavegan.utils import read_hdf5
class HiFiGANGenerator(torch.nn.Module):
"""HiFiGAN generator module."""
def __init__(
self,
in_channels=80,
out_channels=1,
channels=512,
kernel_size=7,
upsample_scales=(8, 8, 2, 2),
upsample_kernel_sizes=(16, 16, 4, 4),
resblock_kernel_sizes=(3, 7, 11),
resblock_dilations=[(1, 3, 5), (1, 3, 5), (1, 3, 5)],
use_additional_convs=True,
bias=True,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.1},
use_weight_norm=True,
):
"""Initialize HiFiGANGenerator module.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
channels (int): Number of hidden representation channels.
kernel_size (int): Kernel size of initial and final conv layer.
upsample_scales (list): List of upsampling scales.
upsample_kernel_sizes (list): List of kernel sizes for upsampling layers.
resblock_kernel_sizes (list): List of kernel sizes for residual blocks.
resblock_dilations (list): List of dilation list for residual blocks.
use_additional_convs (bool): Whether to use additional conv layers in residual blocks.
bias (bool): Whether to add bias parameter in convolution layers.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
use_weight_norm (bool): Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
"""
super().__init__()
# check hyperparameters are valid
assert kernel_size % 2 == 1, "Kernel size must be odd number."
assert len(upsample_scales) == len(upsample_kernel_sizes)
assert len(resblock_dilations) == len(resblock_kernel_sizes)
# define modules
self.num_upsamples = len(upsample_kernel_sizes)
self.num_blocks = len(resblock_kernel_sizes)
self.input_conv = torch.nn.Conv1d(
in_channels,
channels,
kernel_size,
1,
padding=(kernel_size - 1) // 2,
)
self.upsamples = torch.nn.ModuleList()
self.blocks = torch.nn.ModuleList()
for i in range(len(upsample_kernel_sizes)):
assert upsample_kernel_sizes[i] == 2 * upsample_scales[i]
self.upsamples += [
torch.nn.Sequential(
getattr(torch.nn, nonlinear_activation)(
**nonlinear_activation_params
),
torch.nn.ConvTranspose1d(
channels // (2 ** i),
channels // (2 ** (i + 1)),
upsample_kernel_sizes[i],
upsample_scales[i],
padding=upsample_scales[i] // 2 + upsample_scales[i] % 2,
output_padding=upsample_scales[i] % 2,
),
)
]
for j in range(len(resblock_kernel_sizes)):
self.blocks += [
ResidualBlock(
kernel_size=resblock_kernel_sizes[j],
channels=channels // (2 ** (i + 1)),
dilations=resblock_dilations[j],
bias=bias,
use_additional_convs=use_additional_convs,
nonlinear_activation=nonlinear_activation,
nonlinear_activation_params=nonlinear_activation_params,
)
]
self.output_conv = torch.nn.Sequential(
# NOTE(kan-bayashi): follow official implementation but why
# using different slope parameter here? (0.1 vs. 0.01)
torch.nn.LeakyReLU(),
torch.nn.Conv1d(
channels // (2 ** (i + 1)),
out_channels,
kernel_size,
1,
padding=(kernel_size - 1) // 2,
),
torch.nn.Tanh(),
)
# apply weight norm
if use_weight_norm:
self.apply_weight_norm()
# reset parameters
self.reset_parameters()
def forward(self, c):
"""Calculate forward propagation.
Args:
c (Tensor): Input tensor (B, in_channels, T).
Returns:
Tensor: Output tensor (B, out_channels, T).
"""
c = self.input_conv(c)
for i in range(self.num_upsamples):
c = self.upsamples[i](c)
cs = 0.0 # initialize
for j in range(self.num_blocks):
cs += self.blocks[i * self.num_blocks + j](c)
c = cs / self.num_blocks
c = self.output_conv(c)
return c
def reset_parameters(self):
"""Reset parameters.
This initialization follows the official implementation manner.
https://github.com/jik876/hifi-gan/blob/master/models.py
"""
def _reset_parameters(m):
if isinstance(m, (torch.nn.Conv1d, torch.nn.ConvTranspose1d)):
m.weight.data.normal_(0.0, 0.01)
logging.debug(f"Reset parameters in {m}.")
self.apply(_reset_parameters)
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
logging.debug(f"Weight norm is removed from {m}.")
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, torch.nn.Conv1d) or isinstance(
m, torch.nn.ConvTranspose1d
):
torch.nn.utils.weight_norm(m)
logging.debug(f"Weight norm is applied to {m}.")
self.apply(_apply_weight_norm)
def register_stats(self, stats):
"""Register stats for de-normalization as buffer.
Args:
stats (str): Path of statistics file (".npy" or ".h5").
"""
assert stats.endswith(".h5") or stats.endswith(".npy")
if stats.endswith(".h5"):
mean = read_hdf5(stats, "mean").reshape(-1)
scale = read_hdf5(stats, "scale").reshape(-1)
else:
mean = np.load(stats)[0].reshape(-1)
scale = np.load(stats)[1].reshape(-1)
self.register_buffer("mean", torch.from_numpy(mean).float())
self.register_buffer("scale", torch.from_numpy(scale).float())
logging.info("Successfully registered stats as buffer.")
def inference(self, c, normalize_before=False):
"""Perform inference.
Args:
c (Union[Tensor, ndarray]): Input tensor (T, in_channels).
normalize_before (bool): Whether to perform normalization.
Returns:
Tensor: Output tensor (T ** prod(upsample_scales), out_channels).
"""
if not isinstance(c, torch.Tensor):
c = torch.tensor(c, dtype=torch.float).to(next(self.parameters()).device)
if normalize_before:
c = (c - self.mean) / self.scale
c = self.forward(c.transpose(1, 0).unsqueeze(0))
return c.squeeze(0).transpose(1, 0)
class HiFiGANPeriodDiscriminator(torch.nn.Module):
"""HiFiGAN period discriminator module."""
def __init__(
self,
in_channels=1,
out_channels=1,
period=3,
kernel_sizes=[5, 3],
channels=32,
downsample_scales=[3, 3, 3, 3, 1],
max_downsample_channels=1024,
bias=True,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.1},
use_weight_norm=True,
use_spectral_norm=False,
):
"""Initialize HiFiGANPeriodDiscriminator module.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
period (int): Period.
kernel_sizes (list): Kernel sizes of initial conv layers and the final conv layer.
channels (int): Number of initial channels.
downsample_scales (list): List of downsampling scales.
max_downsample_channels (int): Number of maximum downsampling channels.
use_additional_convs (bool): Whether to use additional conv layers in residual blocks.
bias (bool): Whether to add bias parameter in convolution layers.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
use_weight_norm (bool): Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
use_spectral_norm (bool): Whether to use spectral norm.
If set to true, it will be applied to all of the conv layers.
"""
super().__init__()
assert len(kernel_sizes) == 2
assert kernel_sizes[0] % 2 == 1, "Kernel size must be odd number."
assert kernel_sizes[1] % 2 == 1, "Kernel size must be odd number."
self.period = period
self.convs = torch.nn.ModuleList()
in_chs = in_channels
out_chs = channels
for downsample_scale in downsample_scales:
self.convs += [
torch.nn.Sequential(
torch.nn.Conv2d(
in_chs,
out_chs,
(kernel_sizes[0], 1),
(downsample_scale, 1),
padding=((kernel_sizes[0] - 1) // 2, 0),
),
getattr(torch.nn, nonlinear_activation)(
**nonlinear_activation_params
),
)
]
in_chs = out_chs
# NOTE(kan-bayashi): Use downsample_scale + 1?
out_chs = min(out_chs * 4, max_downsample_channels)
self.output_conv = torch.nn.Conv2d(
out_chs,
out_channels,
(kernel_sizes[1] - 1, 1),
1,
padding=((kernel_sizes[1] - 1) // 2, 0),
)
if use_weight_norm and use_spectral_norm:
raise ValueError("Either use use_weight_norm or use_spectral_norm.")
# apply weight norm
if use_weight_norm:
self.apply_weight_norm()
# apply spectral norm
if use_spectral_norm:
self.apply_spectral_norm()
def forward(self, x):
"""Calculate forward propagation.
Args:
c (Tensor): Input tensor (B, in_channels, T).
Returns:
list: List of each layer's tensors.
"""
# transform 1d to 2d -> (B, C, T/P, P)
b, c, t = x.shape
if t % self.period != 0:
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t += n_pad
x = x.view(b, c, t // self.period, self.period)
# forward conv
outs = []
for layer in self.convs:
x = layer(x)
outs += [x]
x = self.output_conv(x)
x = torch.flatten(x, 1, -1)
outs += [x]
return outs
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.utils.weight_norm(m)
logging.debug(f"Weight norm is applied to {m}.")
self.apply(_apply_weight_norm)
def apply_spectral_norm(self):
"""Apply spectral normalization module from all of the layers."""
def _apply_spectral_norm(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.utils.spectral_norm(m)
logging.debug(f"Spectral norm is applied to {m}.")
self.apply(_apply_spectral_norm)
class HiFiGANMultiPeriodDiscriminator(torch.nn.Module):
"""HiFiGAN multi-period discriminator module."""
def __init__(
self,
periods=[2, 3, 5, 7, 11],
discriminator_params={
"in_channels": 1,
"out_channels": 1,
"kernel_sizes": [5, 3],
"channels": 32,
"downsample_scales": [3, 3, 3, 3, 1],
"max_downsample_channels": 1024,
"bias": True,
"nonlinear_activation": "LeakyReLU",
"nonlinear_activation_params": {"negative_slope": 0.1},
"use_weight_norm": True,
"use_spectral_norm": False,
},
):
"""Initialize HiFiGANMultiPeriodDiscriminator module.
Args:
periods (list): List of periods.
discriminator_params (dict): Parameters for hifi-gan period discriminator module.
The period parameter will be overwritten.
"""
super().__init__()
self.discriminators = torch.nn.ModuleList()
for period in periods:
params = copy.deepcopy(discriminator_params)
params["period"] = period
self.discriminators += [HiFiGANPeriodDiscriminator(**params)]
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input noise signal (B, 1, T).
Returns:
List: List of list of each discriminator outputs, which consists of each layer output tensors.
"""
outs = []
for f in self.discriminators:
outs += [f(x)]
return outs
class HiFiGANScaleDiscriminator(torch.nn.Module):
"""HiFi-GAN scale discriminator module."""
def __init__(
self,
in_channels=1,
out_channels=1,
kernel_sizes=[15, 41, 5, 3],
channels=128,
max_downsample_channels=1024,
max_groups=16,
bias=True,
downsample_scales=[2, 2, 4, 4, 1],
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.1},
use_weight_norm=True,
use_spectral_norm=False,
):
"""Initilize HiFiGAN scale discriminator module.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
kernel_sizes (list): List of four kernel sizes. The first will be used for the first conv layer,
and the second is for downsampling part, and the remaining two are for output layers.
channels (int): Initial number of channels for conv layer.
max_downsample_channels (int): Maximum number of channels for downsampling layers.
bias (bool): Whether to add bias parameter in convolution layers.
downsample_scales (list): List of downsampling scales.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
use_weight_norm (bool): Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
use_spectral_norm (bool): Whether to use spectral norm.
If set to true, it will be applied to all of the conv layers.
"""
super().__init__()
self.layers = torch.nn.ModuleList()
# check kernel size is valid
assert len(kernel_sizes) == 4
for ks in kernel_sizes:
assert ks % 2 == 1
# add first layer
self.layers += [
torch.nn.Sequential(
torch.nn.Conv1d(
in_channels,
channels,
# NOTE(kan-bayashi): Use always the same kernel size
kernel_sizes[0],
bias=bias,
padding=(kernel_sizes[0] - 1) // 2,
),
getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params),
)
]
# add downsample layers
in_chs = channels
out_chs = channels
# NOTE(kan-bayashi): Remove hard coding?
groups = 4
for downsample_scale in downsample_scales:
self.layers += [
torch.nn.Sequential(
torch.nn.Conv1d(
in_chs,
out_chs,
kernel_size=kernel_sizes[1],
stride=downsample_scale,
padding=(kernel_sizes[1] - 1) // 2,
groups=groups,
bias=bias,
),
getattr(torch.nn, nonlinear_activation)(
**nonlinear_activation_params
),
)
]
in_chs = out_chs
# NOTE(kan-bayashi): Remove hard coding?
out_chs = min(in_chs * 2, max_downsample_channels)
# NOTE(kan-bayashi): Remove hard coding?
groups = min(groups * 4, max_groups)
# add final layers
out_chs = min(in_chs * 2, max_downsample_channels)
self.layers += [
torch.nn.Sequential(
torch.nn.Conv1d(
in_chs,
out_chs,
kernel_size=kernel_sizes[2],
stride=1,
padding=(kernel_sizes[2] - 1) // 2,
bias=bias,
),
getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params),
)
]
self.layers += [
torch.nn.Conv1d(
out_chs,
out_channels,
kernel_size=kernel_sizes[3],
stride=1,
padding=(kernel_sizes[3] - 1) // 2,
bias=bias,
),
]
if use_weight_norm and use_spectral_norm:
raise ValueError("Either use use_weight_norm or use_spectral_norm.")
# apply weight norm
if use_weight_norm:
self.apply_weight_norm()
# apply spectral norm
if use_spectral_norm:
self.apply_spectral_norm()
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input noise signal (B, 1, T).
Returns:
List: List of output tensors of each layer.
"""
outs = []
for f in self.layers:
x = f(x)
outs += [x]
return outs
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.utils.weight_norm(m)
logging.debug(f"Weight norm is applied to {m}.")
self.apply(_apply_weight_norm)
def apply_spectral_norm(self):
"""Apply spectral normalization module from all of the layers."""
def _apply_spectral_norm(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.utils.spectral_norm(m)
logging.debug(f"Spectral norm is applied to {m}.")
self.apply(_apply_spectral_norm)
class HiFiGANMultiScaleDiscriminator(torch.nn.Module):
"""HiFi-GAN multi-scale discriminator module."""
def __init__(
self,
scales=3,
downsample_pooling="AvgPool1d",
# follow the official implementation setting
downsample_pooling_params={
"kernel_size": 4,
"stride": 2,
"padding": 2,
},
discriminator_params={
"in_channels": 1,
"out_channels": 1,
"kernel_sizes": [15, 41, 5, 3],
"channels": 128,
"max_downsample_channels": 1024,
"max_groups": 16,
"bias": True,
"downsample_scales": [2, 2, 4, 4, 1],
"nonlinear_activation": "LeakyReLU",
"nonlinear_activation_params": {"negative_slope": 0.1},
},
follow_official_norm=False,
):
"""Initilize HiFiGAN multi-scale discriminator module.
Args:
scales (int): Number of multi-scales.
downsample_pooling (str): Pooling module name for downsampling of the inputs.
downsample_pooling_params (dict): Parameters for the above pooling module.
discriminator_params (dict): Parameters for hifi-gan scale discriminator module.
follow_official_norm (bool): Whether to follow the norm setting of the official
implementaion. The first discriminator uses spectral norm and the other
discriminators use weight norm.
"""
super().__init__()
self.discriminators = torch.nn.ModuleList()
# add discriminators
for i in range(scales):
params = copy.deepcopy(discriminator_params)
if follow_official_norm:
if i == 0:
params["use_weight_norm"] = False
params["use_spectral_norm"] = True
else:
params["use_weight_norm"] = True
params["use_spectral_norm"] = False
self.discriminators += [HiFiGANScaleDiscriminator(**params)]
self.pooling = getattr(torch.nn, downsample_pooling)(
**downsample_pooling_params
)
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input noise signal (B, 1, T).
Returns:
List: List of list of each discriminator outputs, which consists of each layer output tensors.
"""
outs = []
for f in self.discriminators:
outs += [f(x)]
x = self.pooling(x)
return outs
class HiFiGANMultiScaleMultiPeriodDiscriminator(torch.nn.Module):
"""HiFi-GAN multi-scale + multi-period discriminator module."""
def __init__(
self,
# Multi-scale discriminator related
scales=3,
scale_downsample_pooling="AvgPool1d",
scale_downsample_pooling_params={
"kernel_size": 4,
"stride": 2,
"padding": 2,
},
scale_discriminator_params={
"in_channels": 1,
"out_channels": 1,
"kernel_sizes": [15, 41, 5, 3],
"channels": 128,
"max_downsample_channels": 1024,
"max_groups": 16,
"bias": True,
"downsample_scales": [2, 2, 4, 4, 1],
"nonlinear_activation": "LeakyReLU",
"nonlinear_activation_params": {"negative_slope": 0.1},
},
follow_official_norm=True,
# Multi-period discriminator related
periods=[2, 3, 5, 7, 11],
period_discriminator_params={
"in_channels": 1,
"out_channels": 1,
"kernel_sizes": [5, 3],
"channels": 32,
"downsample_scales": [3, 3, 3, 3, 1],
"max_downsample_channels": 1024,
"bias": True,
"nonlinear_activation": "LeakyReLU",
"nonlinear_activation_params": {"negative_slope": 0.1},
"use_weight_norm": True,
"use_spectral_norm": False,
},
):
"""Initilize HiFiGAN multi-scale + multi-period discriminator module.
Args:
scales (int): Number of multi-scales.
scale_downsample_pooling (str): Pooling module name for downsampling of the inputs.
scale_downsample_pooling_params (dict): Parameters for the above pooling module.
scale_discriminator_params (dict): Parameters for hifi-gan scale discriminator module.
follow_official_norm (bool): Whether to follow the norm setting of the official
implementaion. The first discriminator uses spectral norm and the other
discriminators use weight norm.
periods (list): List of periods.
period_discriminator_params (dict): Parameters for hifi-gan period discriminator module.
The period parameter will be overwritten.
"""
super().__init__()
self.msd = HiFiGANMultiScaleDiscriminator(
scales=scales,
downsample_pooling=scale_downsample_pooling,
downsample_pooling_params=scale_downsample_pooling_params,
discriminator_params=scale_discriminator_params,
follow_official_norm=follow_official_norm,
)
self.mpd = HiFiGANMultiPeriodDiscriminator(
periods=periods,
discriminator_params=period_discriminator_params,
)
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input noise signal (B, 1, T).
Returns:
List: List of list of each discriminator outputs,
which consists of each layer output tensors.
Multi scale and multi period ones are concatenated.
"""
msd_outs = self.msd(x)
mpd_outs = self.mpd(x)
return msd_outs + mpd_outs
|