File size: 7,211 Bytes
2b7bf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# This is the configuration file for yesno dataset.
# Note that this configuration is just for debugging.

###########################################################
#                FEATURE EXTRACTION SETTING               #
###########################################################
sampling_rate: 8000      # Sampling rate.
fft_size: 1024           # FFT size.
hop_size: 200            # Hop size.
win_length: null         # Window length.
                         # If set to null, it will be the same as fft_size.
window: "hann"           # Window function.
num_mels: 80             # Number of mel basis.
fmin: 0                  # Minimum freq in mel basis calculation.
fmax: 4000               # Maximum frequency in mel basis calculation.
global_gain_scale: 0.8   # Will be multiplied to all of waveform.
trim_silence: false      # Whether to trim the start and end of silence.
trim_threshold_in_db: 60 # Need to tune carefully if the recording is not good.
trim_frame_size: 1024    # Frame size in trimming.
trim_hop_size: 256       # Hop size in trimming.
format: "hdf5"           # Feature file format. " npy " or " hdf5 " is supported.

###########################################################
#         GENERATOR NETWORK ARCHITECTURE SETTING          #
###########################################################
generator_type: "MelGANGenerator" # Generator type.
generator_params:
    in_channels: 80               # Number of input channels.
    out_channels: 4               # Number of output channels.
    kernel_size: 7                # Kernel size of initial and final conv layers.
    channels: 256                 # Initial number of channels for conv layers.
    upsample_scales: [2, 5, 5]    # List of Upsampling scales.
    stack_kernel_size: 3          # Kernel size of dilated conv layers in residual stack.
    stacks: 1                     # Number of stacks in a single residual stack module.
    use_weight_norm: True         # Whether to use weight normalization.
    use_causal_conv: False        # Whether to use causal convolution.

###########################################################
#       DISCRIMINATOR NETWORK ARCHITECTURE SETTING        #
###########################################################
discriminator_type: "MelGANMultiScaleDiscriminator" # Discriminator type.
discriminator_params:
    in_channels: 1                    # Number of input channels.
    out_channels: 1                   # Number of output channels.
    scales: 3                         # Number of multi-scales.
    downsample_pooling: "AvgPool1d"   # Pooling type for the input downsampling.
    downsample_pooling_params:        # Parameters of the above pooling function.
        kernel_size: 4
        stride: 2
        padding: 1
        count_include_pad: False
    kernel_sizes: [5, 3]              # List of kernel size.
    channels: 16                      # Number of channels of the initial conv layer.
    max_downsample_channels: 64       # Maximum number of channels of downsampling layers.
    downsample_scales: [4, 4, 4]      # List of downsampling scales.
    nonlinear_activation: "LeakyReLU" # Nonlinear activation function.
    nonlinear_activation_params:      # Parameters of nonlinear activation function.
        negative_slope: 0.2
    use_weight_norm: True             # Whether to use weight norm.

###########################################################
#                   STFT LOSS SETTING                     #
###########################################################
stft_loss_params:
    fft_sizes: [1024, 2048, 512]  # List of FFT size for STFT-based loss.
    hop_sizes: [120, 240, 50]     # List of hop size for STFT-based loss
    win_lengths: [600, 1200, 240] # List of window length for STFT-based loss.
    window: "hann_window"         # Window function for STFT-based loss
use_subband_stft_loss: true
subband_stft_loss_params:
    fft_sizes: [384, 683, 171]  # List of FFT size for STFT-based loss.
    hop_sizes: [30, 60, 10]     # List of hop size for STFT-based loss
    win_lengths: [150, 300, 60] # List of window length for STFT-based loss.
    window: "hann_window"         # Window function for STFT-based loss

###########################################################
#               ADVERSARIAL LOSS SETTING                  #
###########################################################
use_feat_match_loss: false # Whether to use feature matching loss.
lambda_adv: 2.5            # Loss balancing coefficient.

###########################################################
#                  DATA LOADER SETTING                    #
###########################################################
batch_size: 2               # Batch size.
batch_max_steps: 4000       # Length of each audio in batch. Make sure dividable by hop_size.
pin_memory: true            # Whether to pin memory in Pytorch DataLoader.
num_workers: 2              # Number of workers in Pytorch DataLoader.
remove_short_samples: false # Whether to remove samples the length of which are less than batch_max_steps.
allow_cache: true           # Whether to allow cache in dataset. If true, it requires cpu memory.

###########################################################
#             OPTIMIZER & SCHEDULER SETTING               #
###########################################################
generator_optimizer_params:
    lr: 0.0001             # Generator's learning rate.
    eps: 1.0e-6            # Generator's epsilon.
    weight_decay: 0.0      # Generator's weight decay coefficient.
generator_scheduler_params:
    step_size: 200000      # Generator's scheduler step size.
    gamma: 0.5             # Generator's scheduler gamma.
                           # At each step size, lr will be multiplied by this parameter.
generator_grad_norm: 10    # Generator's gradient norm.
discriminator_optimizer_params:
    lr: 0.00005            # Discriminator's learning rate.
    eps: 1.0e-6            # Discriminator's epsilon.
    weight_decay: 0.0      # Discriminator's weight decay coefficient.
discriminator_scheduler_params:
    step_size: 200000      # Discriminator's scheduler step size.
    gamma: 0.5             # Discriminator's scheduler gamma.
                           # At each step size, lr will be multiplied by this parameter.
discriminator_grad_norm: 1 # Discriminator's gradient norm.

###########################################################
#                    INTERVAL SETTING                     #
###########################################################
discriminator_train_start_steps: 5 # Number of steps to start to train discriminator.
train_max_steps: 10                # Number of training steps.
save_interval_steps: 5             # Interval steps to save checkpoint.
eval_interval_steps: 5             # Interval steps to evaluate the network.
log_interval_steps: 5              # Interval steps to record the training log.

###########################################################
#                     OTHER SETTING                       #
###########################################################
num_save_intermediate_results: 4  # Number of results to be saved as intermediate results.