File size: 1,827 Bytes
3174747
 
 
 
 
88459e0
3174747
c999fa4
 
490092e
3174747
 
 
490092e
3174747
 
7a9ed86
 
 
 
 
4a8a4b5
3174747
 
3cb3114
 
3174747
 
 
 
 
 
 
 
 
 
 
121bd30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import shutil
import zipfile
import gradio as gr


os.system('gdown https://drive.google.com/uc?id=1Flw6Z0K2QdRrTn5F-gVt6HdR9TRPiaKy')
with zipfile.ZipFile('VQMIVC-pretrained models.zip', 'r') as zip_ref:
    zip_ref.extractall('.')
    
shutil.move('VQMIVC-pretrained models/checkpoints/', '.')
shutil.move('VQMIVC-pretrained models/vocoder/', '.')



def inference(audio1, audio2):
  
  os.rename(audio1.name, '1.wav')
  os.rename(audio2.name, '2.wav')
  os.system('ls')
  os.system("python convert_example.py -s 1.wav -r 2.wav -c converted -m 'checkpoints/useCSMITrue_useCPMITrue_usePSMITrue_useAmpTrue/VQMIVC-model.ckpt-500.pt'")
  out = "converted/1_converted_gen.wav"
  return out

inputs = [gr.inputs.Audio(label="Source Audio", type='file'),gr.inputs.Audio(label="Reference Audio", type='file')]
outputs =  gr.outputs.Audio(label="Output Audio", type='file')


title = "VITS"
description = "demo for VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2106.06103'>Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech</a> | <a href='https://github.com/jaywalnut310/vits'>Github Repo</a></p>"

examples = [
 ["We propose VITS, Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech."],
 ["Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling."]   
]

gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, enable_queue=True).launch()