akhaliq's picture
akhaliq HF staff
Update app.py
3e7d42c verified
raw
history blame
4.82 kB
import base64
import requests
from io import BytesIO
from PIL import Image
import gradio as gr
def encode_image(img):
"""
Encodes a PIL Image to a base64 string in PNG format.
"""
buffered = BytesIO()
img.save(buffered, format="PNG")
encoded_string = base64.b64encode(buffered.getvalue()).decode("utf-8")
return encoded_string
def get_api_response(api_key, user_inputs):
"""
Sends the user message and image to the Hyperbolic API and retrieves the response.
"""
if not api_key:
return {"error": "API key is required."}
if not user_inputs.get("text") and not user_inputs.get("image"):
return {"error": "Please provide a text message, an image, or both."}
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
}
messages = []
if user_inputs.get("text"):
messages.append({
"type": "text",
"text": user_inputs["text"]
})
if user_inputs.get("image"):
# Open the uploaded image (already a PIL Image)
base64_img = encode_image(user_inputs["image"])
messages.append({
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{base64_img}"}
})
payload = {
"messages": [
{
"role": "user",
"content": messages,
}
],
"model": "Qwen/Qwen2-VL-72B-Instruct",
"max_tokens": 2048,
"temperature": 0.7,
"top_p": 0.9,
}
api_endpoint = "https://api.hyperbolic.xyz/v1/chat/completions"
response = requests.post(api_endpoint, headers=headers, json=payload)
# Check if the request was successful
if response.status_code == 200:
api_response = response.json()
# Extract the AI's reply (assuming the response structure)
ai_reply = api_response.get("choices", [{}])[0].get("message", {}).get("content", "No response content.")
return {"response": ai_reply}
else:
return {"error": f"API Error: {response.status_code} - {response.text}"}
except Exception as e:
return {"error": str(e)}
def chatbot_response(api_key, user_inputs, history):
"""
Handles the chatbot interaction by updating the conversation history.
"""
user_text = user_inputs.get("text")
user_image = user_inputs.get("image")
# Prepare user content
user_content = []
if user_text:
user_content.append(user_text)
if user_image:
user_content.append(user_image)
# Append the user's message to the history
if user_content:
history.append((user_content, None))
# Get the API response
api_result = get_api_response(api_key, user_inputs)
if "error" in api_result:
ai_message = f"Error: {api_result['error']}"
bot_content = [ai_message]
else:
ai_message = api_result["response"]
bot_content = [ai_message]
# Append the AI's response to the history
history[-1] = (history[-1][0], bot_content)
return history, history
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# πŸ–ΌοΈ Qwen2-VL-72B-Instruct with Hyperbolic API
Engage in a conversation with the AI by sending text messages and/or uploading images. Enter your Hyperbolic API key to get started.
"""
)
with gr.Row():
api_key_input = gr.Textbox(
label="πŸ”‘ Hyperbolic API Key",
type="password",
placeholder="Enter your API key here",
interactive=True
)
chatbot = gr.Chatbot(label="πŸ’¬ Chatbot") # Removed `.style()` method
with gr.Row():
chat_input = gr.MultimodalTextbox(
label="Your Input",
placeholder="Type your message and/or upload an image...",
file_count="multiple", # Allows multiple files if needed
interactive=True
)
send_button = gr.Button("πŸ“€ Send")
# Hidden state to keep track of the conversation history
state = gr.State([])
send_button.click(
fn=chatbot_response,
inputs=[api_key_input, chat_input, state],
outputs=[chatbot, state]
)
gr.Markdown(
"""
---
**Note:** Your API key is used only for this session and is not stored. Ensure you trust the environment in which you're running this application.
"""
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()