Ahsen Khaliq
Update app.py
dbea940
raw
history blame
30.8 kB
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
import os
import network
import morphology
import math
import gradio as gr
from torchvision import transforms
import torchtext
from stat import ST_CTIME
from datetime import datetime, timedelta
import shutil
# Images
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2021/08/04/14/16/tower-6521842_1280.jpg', 'tower.jpg')
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2017/08/31/05/36/buildings-2699520_1280.jpg', 'city.jpg')
idx = 0
torchtext.utils.download_from_url("https://drive.google.com/uc?id=1NDD54BLligyr8tzo8QGI5eihZisXK1nq", root=".")
def to_PIL_img(img):
result = Image.fromarray((img.data.cpu().numpy().transpose((1, 2, 0)) * 255).astype(np.uint8))
return result
def save_img(img, output_path):
to_PIL_img(img).save(output_path)
def param2stroke(param, H, W, meta_brushes):
"""
Input a set of stroke parameters and output its corresponding foregrounds and alpha maps.
Args:
param: a tensor with shape n_strokes x n_param_per_stroke. Here, param_per_stroke is 8:
x_center, y_center, width, height, theta, R, G, and B.
H: output height.
W: output width.
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
Returns:
foregrounds: a tensor with shape n_strokes x 3 x H x W, containing color information.
alphas: a tensor with shape n_strokes x 3 x H x W,
containing binary information of whether a pixel is belonging to the stroke (alpha mat), for painting process.
"""
# Firstly, resize the meta brushes to the required shape,
# in order to decrease GPU memory especially when the required shape is small.
meta_brushes_resize = F.interpolate(meta_brushes, (H, W))
b = param.shape[0]
# Extract shape parameters and color parameters.
param_list = torch.split(param, 1, dim=1)
x0, y0, w, h, theta = [item.squeeze(-1) for item in param_list[:5]]
R, G, B = param_list[5:]
# Pre-compute sin theta and cos theta
sin_theta = torch.sin(torch.acos(torch.tensor(-1., device=param.device)) * theta)
cos_theta = torch.cos(torch.acos(torch.tensor(-1., device=param.device)) * theta)
# index means each stroke should use which meta stroke? Vertical meta stroke or horizontal meta stroke.
# When h > w, vertical stroke should be used. When h <= w, horizontal stroke should be used.
index = torch.full((b,), -1, device=param.device, dtype=torch.long)
index[h > w] = 0
index[h <= w] = 1
brush = meta_brushes_resize[index.long()]
# Calculate warp matrix according to the rules defined by pytorch, in order for warping.
warp_00 = cos_theta / w
warp_01 = sin_theta * H / (W * w)
warp_02 = (1 - 2 * x0) * cos_theta / w + (1 - 2 * y0) * sin_theta * H / (W * w)
warp_10 = -sin_theta * W / (H * h)
warp_11 = cos_theta / h
warp_12 = (1 - 2 * y0) * cos_theta / h - (1 - 2 * x0) * sin_theta * W / (H * h)
warp_0 = torch.stack([warp_00, warp_01, warp_02], dim=1)
warp_1 = torch.stack([warp_10, warp_11, warp_12], dim=1)
warp = torch.stack([warp_0, warp_1], dim=1)
# Conduct warping.
grid = F.affine_grid(warp, [b, 3, H, W], align_corners=False)
brush = F.grid_sample(brush, grid, align_corners=False)
# alphas is the binary information suggesting whether a pixel is belonging to the stroke.
alphas = (brush > 0).float()
brush = brush.repeat(1, 3, 1, 1)
alphas = alphas.repeat(1, 3, 1, 1)
# Give color to foreground strokes.
color_map = torch.cat([R, G, B], dim=1)
color_map = color_map.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, H, W)
foreground = brush * color_map
# Dilation and erosion are used for foregrounds and alphas respectively to prevent artifacts on stroke borders.
foreground = morphology.dilation(foreground)
alphas = morphology.erosion(alphas)
return foreground, alphas
def param2img_serial(
param, decision, meta_brushes, cur_canvas, frame_dir, has_border=False, original_h=None, original_w=None, *, all_frames):
"""
Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
and whether there is a border (if intermediate painting results are required).
Output the painting results of adding the corresponding strokes on the current canvas.
Args:
param: a tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch x n_param_per_stroke
decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
cur_canvas: a tensor with shape batch size x 3 x H x W,
where H and W denote height and width of padded results of original images.
frame_dir: directory to save intermediate painting results. None means intermediate results are not required.
has_border: on the last painting layer, in order to make sure that the painting results do not miss
any important detail, we choose to paint again on this layer but shift patch_size // 2 pixels when
cutting patches. In this case, if intermediate results are required, we need to cut the shifted length
on the border before saving, or there would be a black border.
original_h: to indicate the original height for cropping when saving intermediate results.
original_w: to indicate the original width for cropping when saving intermediate results.
Returns:
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
"""
# param: b, h, w, stroke_per_patch, param_per_stroke
# decision: b, h, w, stroke_per_patch
b, h, w, s, p = param.shape
H, W = cur_canvas.shape[-2:]
is_odd_y = h % 2 == 1
is_odd_x = w % 2 == 1
patch_size_y = 2 * H // h
patch_size_x = 2 * W // w
even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device)
even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device)
odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device)
odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device)
even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x])
odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x])
even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x])
odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])
def partial_render(this_canvas, patch_coord_y, patch_coord_x, stroke_id):
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
stride=(patch_size_y // 2, patch_size_x // 2))
# canvas_patch: b, 3 * py * px, h * w
canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous()
canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous()
# canvas_patch: b, h, w, 3, py, px
selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :]
selected_h, selected_w = selected_canvas_patch.shape[1:3]
selected_param = param[:, patch_coord_y, patch_coord_x, stroke_id, :].view(-1, p).contiguous()
selected_decision = decision[:, patch_coord_y, patch_coord_x, stroke_id].view(-1).contiguous()
selected_foregrounds = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x,
device=this_canvas.device)
selected_alphas = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x, device=this_canvas.device)
if selected_param[selected_decision, :].shape[0] > 0:
selected_foregrounds[selected_decision, :, :, :], selected_alphas[selected_decision, :, :, :] = param2stroke(selected_param[selected_decision, :], patch_size_y, patch_size_x, meta_brushes)
selected_foregrounds = selected_foregrounds.view(
b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous()
selected_alphas = selected_alphas.view(b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous()
selected_decision = selected_decision.view(b, selected_h, selected_w, 1, 1, 1).contiguous()
selected_canvas_patch = selected_foregrounds * selected_alphas * selected_decision + selected_canvas_patch * (
1 - selected_alphas * selected_decision)
this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous()
# this_canvas: b, 3, selected_h, py, selected_w, px
this_canvas = this_canvas.view(b, 3, selected_h * patch_size_y, selected_w * patch_size_x).contiguous()
# this_canvas: b, 3, selected_h * py, selected_w * px
return this_canvas
global idx
if has_border:
factor = 2
else:
factor = 4
def store_frame(img):
all_frames.append(to_PIL_img(img))
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x, i)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
store_frame(frame[0])
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x, i)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
store_frame(frame[0])
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x, i)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
store_frame(frame[0])
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
for i in range(s):
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x, i)
canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
idx += 1
if frame_dir is not None:
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
store_frame(frame[0])
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
return cur_canvas
def param2img_parallel(param, decision, meta_brushes, cur_canvas):
"""
Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
and whether there is a border (if intermediate painting results are required).
Output the painting results of adding the corresponding strokes on the current canvas.
Args:
param: a tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch x n_param_per_stroke
decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension
x n_stroke_per_patch
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
cur_canvas: a tensor with shape batch size x 3 x H x W,
where H and W denote height and width of padded results of original images.
Returns:
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
"""
# param: b, h, w, stroke_per_patch, param_per_stroke
# decision: b, h, w, stroke_per_patch
b, h, w, s, p = param.shape
param = param.view(-1, 8).contiguous()
decision = decision.view(-1).contiguous().bool()
H, W = cur_canvas.shape[-2:]
is_odd_y = h % 2 == 1
is_odd_x = w % 2 == 1
patch_size_y = 2 * H // h
patch_size_x = 2 * W // w
even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device)
even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device)
odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device)
odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device)
even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x])
odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x])
even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x])
odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])
foregrounds = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device)
alphas = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device)
valid_foregrounds, valid_alphas = param2stroke(param[decision, :], patch_size_y, patch_size_x, meta_brushes)
foregrounds[decision, :, :, :] = valid_foregrounds
alphas[decision, :, :, :] = valid_alphas
# foreground, alpha: b * h * w * stroke_per_patch, 3, patch_size_y, patch_size_x
foregrounds = foregrounds.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
alphas = alphas.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
# foreground, alpha: b, h, w, stroke_per_patch, 3, render_size_y, render_size_x
decision = decision.view(-1, h, w, s, 1, 1, 1).contiguous()
# decision: b, h, w, stroke_per_patch, 1, 1, 1
def partial_render(this_canvas, patch_coord_y, patch_coord_x):
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
stride=(patch_size_y // 2, patch_size_x // 2))
# canvas_patch: b, 3 * py * px, h * w
canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous()
canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous()
# canvas_patch: b, h, w, 3, py, px
selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :]
selected_foregrounds = foregrounds[:, patch_coord_y, patch_coord_x, :, :, :, :]
selected_alphas = alphas[:, patch_coord_y, patch_coord_x, :, :, :, :]
selected_decisions = decision[:, patch_coord_y, patch_coord_x, :, :, :, :]
for i in range(s):
cur_foreground = selected_foregrounds[:, :, :, i, :, :, :]
cur_alpha = selected_alphas[:, :, :, i, :, :, :]
cur_decision = selected_decisions[:, :, :, i, :, :, :]
selected_canvas_patch = cur_foreground * cur_alpha * cur_decision + selected_canvas_patch * (
1 - cur_alpha * cur_decision)
this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous()
# this_canvas: b, 3, h_half, py, w_half, px
h_half = this_canvas.shape[2]
w_half = this_canvas.shape[4]
this_canvas = this_canvas.view(b, 3, h_half * patch_size_y, w_half * patch_size_x).contiguous()
# this_canvas: b, 3, h_half * py, w_half * px
return this_canvas
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x)
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
if is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
if not is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x)
canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
if not is_odd_y:
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2)
if is_odd_x:
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
cur_canvas = canvas
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
return cur_canvas
def read_img(img_path, img_type='RGB', h=None, w=None):
img = Image.open(img_path).convert(img_type)
if h is not None and w is not None:
img = img.resize((w, h), resample=Image.NEAREST)
img = np.array(img)
if img.ndim == 2:
img = np.expand_dims(img, axis=-1)
img = img.transpose((2, 0, 1))
img = torch.from_numpy(img).unsqueeze(0).float() / 255.
return img
def pad(img, H, W):
b, c, h, w = img.shape
pad_h = (H - h) // 2
pad_w = (W - w) // 2
remainder_h = (H - h) % 2
remainder_w = (W - w) % 2
img = torch.cat([torch.zeros((b, c, pad_h, w), device=img.device), img,
torch.zeros((b, c, pad_h + remainder_h, w), device=img.device)], dim=-2)
img = torch.cat([torch.zeros((b, c, H, pad_w), device=img.device), img,
torch.zeros((b, c, H, pad_w + remainder_w), device=img.device)], dim=-1)
return img
def crop(img, h, w):
H, W = img.shape[-2:]
pad_h = (H - h) // 2
pad_w = (W - w) // 2
remainder_h = (H - h) % 2
remainder_w = (W - w) % 2
img = img[:, :, pad_h:H - pad_h - remainder_h, pad_w:W - pad_w - remainder_w]
return img
def main(input_path, model_path, output_dir, need_animation=False, resize_h=None, resize_w=None, serial=False):
if not os.path.exists(output_dir):
os.mkdir(output_dir)
for entry in os.listdir(output_dir):
path = os.path.join(output_dir, entry)
stats = os.stat(path)
created_time = datetime.fromtimestamp(stats[ST_CTIME])
if created_time < datetime.now() - timedelta(minutes = 10):
if os.path.isdir(path):
shutil.rmtree(path)
else:
os.remove(path)
input_name = os.path.basename(input_path)
output_path = os.path.join(output_dir, input_name)
frame_dir = None
if need_animation:
if not serial:
print('It must be under serial mode if animation results are required, so serial flag is set to True!')
serial = True
frame_dir = os.path.join(output_dir, input_name[:input_name.find('.')])
if not os.path.exists(frame_dir):
os.mkdir(frame_dir)
patch_size = 32
stroke_num = 8
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net_g = network.Painter(5, stroke_num, 256, 8, 3, 3).to(device)
net_g.load_state_dict(torch.load(model_path))
net_g.eval()
for param in net_g.parameters():
param.requires_grad = False
brush_large_vertical = read_img('brush/brush_large_vertical.png', 'L').to(device)
brush_large_horizontal = read_img('brush/brush_large_horizontal.png', 'L').to(device)
meta_brushes = torch.cat(
[brush_large_vertical, brush_large_horizontal], dim=0)
with torch.no_grad():
original_img = read_img(input_path, 'RGB', resize_h, resize_w).to(device)
original_h, original_w = original_img.shape[-2:]
K = max(math.ceil(math.log2(max(original_h, original_w) / patch_size)), 0)
original_img_pad_size = patch_size * (2 ** K)
original_img_pad = pad(original_img, original_img_pad_size, original_img_pad_size)
final_result = torch.zeros_like(original_img_pad).to(device)
all_frames = []
for layer in range(0, K + 1):
layer_size = patch_size * (2 ** layer)
img = F.interpolate(original_img_pad, (layer_size, layer_size))
result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size))
result_patch = F.unfold(result, (patch_size, patch_size),
stride=(patch_size, patch_size))
# There are patch_num * patch_num patches in total
patch_num = (layer_size - patch_size) // patch_size + 1
# img_patch, result_patch: b, 3 * output_size * output_size, h * w
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
result_patch = result_patch.permute(0, 2, 1).contiguous().view(
-1, 3, patch_size, patch_size).contiguous()
shape_param, stroke_decision = net_g(img_patch, result_patch)
stroke_decision = network.SignWithSigmoidGrad.apply(stroke_decision)
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view(
img_patch.shape[0], stroke_num, 3).contiguous()
stroke_param = torch.cat([shape_param, color], dim=-1)
# stroke_param: b * h * w, stroke_per_patch, param_per_stroke
# stroke_decision: b * h * w, stroke_per_patch, 1
param = stroke_param.view(1, patch_num, patch_num, stroke_num, 8).contiguous()
decision = stroke_decision.view(1, patch_num, patch_num, stroke_num).contiguous().bool()
# param: b, h, w, stroke_per_patch, 8
# decision: b, h, w, stroke_per_patch
param[..., :2] = param[..., :2] / 2 + 0.25
param[..., 2:4] = param[..., 2:4] / 2
if serial:
final_result = param2img_serial(param, decision, meta_brushes, final_result,
frame_dir, False, original_h, original_w, all_frames = all_frames)
else:
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
border_size = original_img_pad_size // (2 * patch_num)
img = F.interpolate(original_img_pad, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
img = F.pad(img, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2,
0, 0, 0, 0])
result = F.pad(result, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2,
0, 0, 0, 0])
img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size))
result_patch = F.unfold(result, (patch_size, patch_size), stride=(patch_size, patch_size))
final_result = F.pad(final_result, [border_size, border_size, border_size, border_size, 0, 0, 0, 0])
h = (img.shape[2] - patch_size) // patch_size + 1
w = (img.shape[3] - patch_size) // patch_size + 1
# img_patch, result_patch: b, 3 * output_size * output_size, h * w
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
result_patch = result_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
shape_param, stroke_decision = net_g(img_patch, result_patch)
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view(
img_patch.shape[0], stroke_num, 3).contiguous()
stroke_param = torch.cat([shape_param, color], dim=-1)
# stroke_param: b * h * w, stroke_per_patch, param_per_stroke
# stroke_decision: b * h * w, stroke_per_patch, 1
param = stroke_param.view(1, h, w, stroke_num, 8).contiguous()
decision = stroke_decision.view(1, h, w, stroke_num).contiguous().bool()
# param: b, h, w, stroke_per_patch, 8
# decision: b, h, w, stroke_per_patch
param[..., :2] = param[..., :2] / 2 + 0.25
param[..., 2:4] = param[..., 2:4] / 2
if serial:
final_result = param2img_serial(param, decision, meta_brushes, final_result,
frame_dir, True, original_h, original_w, all_frames = all_frames)
else:
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
final_result = final_result[:, :, border_size:-border_size, border_size:-border_size]
final_result = crop(final_result, original_h, original_w)
save_img(final_result[0], output_path)
tensor_to_pil = transforms.ToPILImage()(final_result[0].squeeze_(0))
#return tensor_to_pil
all_frames[0].save(os.path.join(frame_dir, 'animation.gif'),
save_all=True, append_images=all_frames[1:], optimize=False, duration=40, loop=0)
return os.path.join(frame_dir, "animation.gif"), tensor_to_pil
def gradio_inference(image):
return main(input_path=image.name,
model_path='model.pth',
output_dir='output/',
need_animation=True, # whether need intermediate results for animation.
resize_h=400, # resize original input to this size. None means do not resize.
resize_w=400, # resize original input to this size. None means do not resize.
serial=True) # if need animation, serial must be True.
title = "Paint Transformer"
description = "Gradio demo for Paint Transformer: Feed Forward Neural Painting with Stroke Prediction. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.03798'>Paint Transformer: Feed Forward Neural Painting with Stroke Prediction</a> | <a href='https://github.com/Huage001/PaintTransformer'>Github Repo</a></p>"
gr.Interface(
gradio_inference,
gr.inputs.Image(type="file", label="Input"),
[gr.outputs.Image(type="file", label="Output GIF"),
gr.outputs.Image(type="pil", label="Output Image")],
title=title,
description=description,
article=article,
examples=[
['city.jpg'],
['tower.jpg']
]).launch(debug=True)