File size: 30,372 Bytes
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
16924a4
 
 
f93590d
 
 
 
 
 
9988281
f93590d
9988281
 
 
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9988281
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb6b38
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9988281
 
 
 
 
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
9988281
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9988281
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9988281
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9988281
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9988281
 
f93590d
9988281
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9988281
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9988281
f93590d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9988281
f93590d
 
 
 
 
9988281
f93590d
9988281
 
 
 
ea4050e
f93590d
 
 
 
 
 
9988281
ea4050e
 
9988281
f93590d
cd95005
 
 
f93590d
 
 
ea4050e
 
 
f93590d
 
16924a4
 
 
 
 
f93590d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
import os
import network
import morphology
import math
import gradio as gr
from torchvision import transforms
import torchtext


# Images
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2021/08/04/14/16/tower-6521842_1280.jpg', 'tower.jpg')
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2017/08/31/05/36/buildings-2699520_1280.jpg', 'city.jpg')

idx = 0

torchtext.utils.download_from_url("https://drive.google.com/uc?id=1NDD54BLligyr8tzo8QGI5eihZisXK1nq", root=".")


def to_PIL_img(img):
    result = Image.fromarray((img.data.cpu().numpy().transpose((1, 2, 0)) * 255).astype(np.uint8))
    return result
def save_img(img, output_path):
    to_PIL_img(img).save(output_path)


def param2stroke(param, H, W, meta_brushes):
    """
    Input a set of stroke parameters and output its corresponding foregrounds and alpha maps.
    Args:
        param: a tensor with shape n_strokes x n_param_per_stroke. Here, param_per_stroke is 8:
        x_center, y_center, width, height, theta, R, G, and B.
        H: output height.
        W: output width.
        meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
         The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.

    Returns:
        foregrounds: a tensor with shape n_strokes x 3 x H x W, containing color information.
        alphas: a tensor with shape n_strokes x 3 x H x W,
         containing binary information of whether a pixel is belonging to the stroke (alpha mat), for painting process.
    """
    # Firstly, resize the meta brushes to the required shape,
    # in order to decrease GPU memory especially when the required shape is small.
    meta_brushes_resize = F.interpolate(meta_brushes, (H, W))
    b = param.shape[0]
    # Extract shape parameters and color parameters.
    param_list = torch.split(param, 1, dim=1)
    x0, y0, w, h, theta = [item.squeeze(-1) for item in param_list[:5]]
    R, G, B = param_list[5:]
    # Pre-compute sin theta and cos theta
    sin_theta = torch.sin(torch.acos(torch.tensor(-1., device=param.device)) * theta)
    cos_theta = torch.cos(torch.acos(torch.tensor(-1., device=param.device)) * theta)
    # index means each stroke should use which meta stroke? Vertical meta stroke or horizontal meta stroke.
    # When h > w, vertical stroke should be used. When h <= w, horizontal stroke should be used.
    index = torch.full((b,), -1, device=param.device, dtype=torch.long)
    index[h > w] = 0
    index[h <= w] = 1
    brush = meta_brushes_resize[index.long()]

    # Calculate warp matrix according to the rules defined by pytorch, in order for warping.
    warp_00 = cos_theta / w
    warp_01 = sin_theta * H / (W * w)
    warp_02 = (1 - 2 * x0) * cos_theta / w + (1 - 2 * y0) * sin_theta * H / (W * w)
    warp_10 = -sin_theta * W / (H * h)
    warp_11 = cos_theta / h
    warp_12 = (1 - 2 * y0) * cos_theta / h - (1 - 2 * x0) * sin_theta * W / (H * h)
    warp_0 = torch.stack([warp_00, warp_01, warp_02], dim=1)
    warp_1 = torch.stack([warp_10, warp_11, warp_12], dim=1)
    warp = torch.stack([warp_0, warp_1], dim=1)
    # Conduct warping.
    grid = F.affine_grid(warp, [b, 3, H, W], align_corners=False)
    brush = F.grid_sample(brush, grid, align_corners=False)
    # alphas is the binary information suggesting whether a pixel is belonging to the stroke.
    alphas = (brush > 0).float()
    brush = brush.repeat(1, 3, 1, 1)
    alphas = alphas.repeat(1, 3, 1, 1)
    # Give color to foreground strokes.
    color_map = torch.cat([R, G, B], dim=1)
    color_map = color_map.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, H, W)
    foreground = brush * color_map
    # Dilation and erosion are used for foregrounds and alphas respectively to prevent artifacts on stroke borders.
    foreground = morphology.dilation(foreground)
    alphas = morphology.erosion(alphas)
    return foreground, alphas


def param2img_serial(
        param, decision, meta_brushes, cur_canvas, frame_dir, has_border=False, original_h=None, original_w=None, *, all_frames):
    """
    Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
    and whether there is a border (if intermediate painting results are required).
    Output the painting results of adding the corresponding strokes on the current canvas.
    Args:
        param: a tensor with shape batch size x patch along height dimension x patch along width dimension
         x n_stroke_per_patch x n_param_per_stroke
        decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension
         x n_stroke_per_patch
        meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
        The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
        cur_canvas: a tensor with shape batch size x 3 x H x W,
         where H and W denote height and width of padded results of original images.
        frame_dir: directory to save intermediate painting results. None means intermediate results are not required.
        has_border: on the last painting layer, in order to make sure that the painting results do not miss
         any important detail, we choose to paint again on this layer but shift patch_size // 2 pixels when
         cutting patches. In this case, if intermediate results are required, we need to cut the shifted length
         on the border before saving, or there would be a black border.
        original_h: to indicate the original height for cropping when saving intermediate results.
        original_w: to indicate the original width for cropping when saving intermediate results.

    Returns:
        cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
    """
    # param: b, h, w, stroke_per_patch, param_per_stroke
    # decision: b, h, w, stroke_per_patch
    b, h, w, s, p = param.shape
    H, W = cur_canvas.shape[-2:]
    is_odd_y = h % 2 == 1
    is_odd_x = w % 2 == 1
    patch_size_y = 2 * H // h
    patch_size_x = 2 * W // w
    even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device)
    even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device)
    odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device)
    odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device)
    even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x])
    odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x])
    even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x])
    odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
    cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
                                    patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])

    def partial_render(this_canvas, patch_coord_y, patch_coord_x, stroke_id):
        canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
                                stride=(patch_size_y // 2, patch_size_x // 2))
        # canvas_patch: b, 3 * py * px, h * w
        canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous()
        canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous()
        # canvas_patch: b, h, w, 3, py, px
        selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :]
        selected_h, selected_w = selected_canvas_patch.shape[1:3]
        selected_param = param[:, patch_coord_y, patch_coord_x, stroke_id, :].view(-1, p).contiguous()
        selected_decision = decision[:, patch_coord_y, patch_coord_x, stroke_id].view(-1).contiguous()
        selected_foregrounds = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x,
                                           device=this_canvas.device)
        selected_alphas = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x, device=this_canvas.device)
        if selected_param[selected_decision, :].shape[0] > 0:
            selected_foregrounds[selected_decision, :, :, :], selected_alphas[selected_decision, :, :, :] =                param2stroke(selected_param[selected_decision, :], patch_size_y, patch_size_x, meta_brushes)
        selected_foregrounds = selected_foregrounds.view(
            b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous()
        selected_alphas = selected_alphas.view(b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous()
        selected_decision = selected_decision.view(b, selected_h, selected_w, 1, 1, 1).contiguous()
        selected_canvas_patch = selected_foregrounds * selected_alphas * selected_decision + selected_canvas_patch * (
                1 - selected_alphas * selected_decision)
        this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous()
        # this_canvas: b, 3, selected_h, py, selected_w, px
        this_canvas = this_canvas.view(b, 3, selected_h * patch_size_y, selected_w * patch_size_x).contiguous()
        # this_canvas: b, 3, selected_h * py, selected_w * px
        return this_canvas

    global idx
    if has_border:
        factor = 2
    else:
        factor = 4

    def store_frame(img):
        all_frames.append(to_PIL_img(img))
        

    if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
        for i in range(s):
            canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x, i)
            if not is_odd_y:
                canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
            if not is_odd_x:
                canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
            cur_canvas = canvas
            idx += 1
            if frame_dir is not None:
                frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
                             patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
                save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
                store_frame(frame[0])

    if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
        for i in range(s):
            canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x, i)
            canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
            canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3)
            if is_odd_y:
                canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
            if is_odd_x:
                canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
            cur_canvas = canvas
            idx += 1
            if frame_dir is not None:
                frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
                             patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
                save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
                store_frame(frame[0])

    if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
        for i in range(s):
            canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x, i)
            canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
            if is_odd_y:
                canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
            if not is_odd_x:
                canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
            cur_canvas = canvas
            idx += 1
            if frame_dir is not None:
                frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
                             patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
                save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
                store_frame(frame[0])

    if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
        for i in range(s):
            canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x, i)
            canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
            if not is_odd_y:
                canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2)
            if is_odd_x:
                canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
            cur_canvas = canvas
            idx += 1
            if frame_dir is not None:
                frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
                             patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
                save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
                store_frame(frame[0])

    cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]

    return cur_canvas


def param2img_parallel(param, decision, meta_brushes, cur_canvas):
    """
        Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
        and whether there is a border (if intermediate painting results are required).
        Output the painting results of adding the corresponding strokes on the current canvas.
        Args:
            param: a tensor with shape batch size x patch along height dimension x patch along width dimension
             x n_stroke_per_patch x n_param_per_stroke
            decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension
             x n_stroke_per_patch
            meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
            The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
            cur_canvas: a tensor with shape batch size x 3 x H x W,
             where H and W denote height and width of padded results of original images.

        Returns:
            cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
        """
    # param: b, h, w, stroke_per_patch, param_per_stroke
    # decision: b, h, w, stroke_per_patch
    b, h, w, s, p = param.shape
    param = param.view(-1, 8).contiguous()
    decision = decision.view(-1).contiguous().bool()
    H, W = cur_canvas.shape[-2:]
    is_odd_y = h % 2 == 1
    is_odd_x = w % 2 == 1
    patch_size_y = 2 * H // h
    patch_size_x = 2 * W // w
    even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device)
    even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device)
    odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device)
    odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device)
    even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x])
    odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x])
    even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x])
    odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
    cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
                                    patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])
    foregrounds = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device)
    alphas = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device)
    valid_foregrounds, valid_alphas = param2stroke(param[decision, :], patch_size_y, patch_size_x, meta_brushes)
    foregrounds[decision, :, :, :] = valid_foregrounds
    alphas[decision, :, :, :] = valid_alphas
    # foreground, alpha: b * h * w * stroke_per_patch, 3, patch_size_y, patch_size_x
    foregrounds = foregrounds.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
    alphas = alphas.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
    # foreground, alpha: b, h, w, stroke_per_patch, 3, render_size_y, render_size_x
    decision = decision.view(-1, h, w, s, 1, 1, 1).contiguous()

    # decision: b, h, w, stroke_per_patch, 1, 1, 1

    def partial_render(this_canvas, patch_coord_y, patch_coord_x):

        canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
                                stride=(patch_size_y // 2, patch_size_x // 2))
        # canvas_patch: b, 3 * py * px, h * w
        canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous()
        canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous()
        # canvas_patch: b, h, w, 3, py, px
        selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :]
        selected_foregrounds = foregrounds[:, patch_coord_y, patch_coord_x, :, :, :, :]
        selected_alphas = alphas[:, patch_coord_y, patch_coord_x, :, :, :, :]
        selected_decisions = decision[:, patch_coord_y, patch_coord_x, :, :, :, :]
        for i in range(s):
            cur_foreground = selected_foregrounds[:, :, :, i, :, :, :]
            cur_alpha = selected_alphas[:, :, :, i, :, :, :]
            cur_decision = selected_decisions[:, :, :, i, :, :, :]
            selected_canvas_patch = cur_foreground * cur_alpha * cur_decision + selected_canvas_patch * (
                    1 - cur_alpha * cur_decision)
        this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous()
        # this_canvas: b, 3, h_half, py, w_half, px
        h_half = this_canvas.shape[2]
        w_half = this_canvas.shape[4]
        this_canvas = this_canvas.view(b, 3, h_half * patch_size_y, w_half * patch_size_x).contiguous()
        # this_canvas: b, 3, h_half * py, w_half * px
        return this_canvas

    if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
        canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x)
        if not is_odd_y:
            canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
        if not is_odd_x:
            canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
        cur_canvas = canvas

    if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
        canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x)
        canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
        canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3)
        if is_odd_y:
            canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
        if is_odd_x:
            canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
        cur_canvas = canvas

    if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
        canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x)
        canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
        if is_odd_y:
            canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
        if not is_odd_x:
            canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
        cur_canvas = canvas

    if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
        canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x)
        canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
        if not is_odd_y:
            canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2)
        if is_odd_x:
            canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
        cur_canvas = canvas

    cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]

    return cur_canvas


def read_img(img_path, img_type='RGB', h=None, w=None):
    img = Image.open(img_path).convert(img_type)
    if h is not None and w is not None:
        img = img.resize((w, h), resample=Image.NEAREST)
    img = np.array(img)
    if img.ndim == 2:
        img = np.expand_dims(img, axis=-1)
    img = img.transpose((2, 0, 1))
    img = torch.from_numpy(img).unsqueeze(0).float() / 255.
    return img


def pad(img, H, W):
    b, c, h, w = img.shape
    pad_h = (H - h) // 2
    pad_w = (W - w) // 2
    remainder_h = (H - h) % 2
    remainder_w = (W - w) % 2
    img = torch.cat([torch.zeros((b, c, pad_h, w), device=img.device), img,
                     torch.zeros((b, c, pad_h + remainder_h, w), device=img.device)], dim=-2)
    img = torch.cat([torch.zeros((b, c, H, pad_w), device=img.device), img,
                     torch.zeros((b, c, H, pad_w + remainder_w), device=img.device)], dim=-1)
    return img


def crop(img, h, w):
    H, W = img.shape[-2:]
    pad_h = (H - h) // 2
    pad_w = (W - w) // 2
    remainder_h = (H - h) % 2
    remainder_w = (W - w) % 2
    img = img[:, :, pad_h:H - pad_h - remainder_h, pad_w:W - pad_w - remainder_w]
    return img


def main(input_path, model_path, output_dir, need_animation=False, resize_h=None, resize_w=None, serial=False):
    if not os.path.exists(output_dir):
        os.mkdir(output_dir)
    input_name = os.path.basename(input_path)
    output_path = os.path.join(output_dir, input_name)
    frame_dir = None
    if need_animation:
        if not serial:
            print('It must be under serial mode if animation results are required, so serial flag is set to True!')
            serial = True
        frame_dir = os.path.join(output_dir, input_name[:input_name.find('.')])
        if not os.path.exists(frame_dir):
            os.mkdir(frame_dir)
    patch_size = 32
    stroke_num = 8
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net_g = network.Painter(5, stroke_num, 256, 8, 3, 3).to(device)
    net_g.load_state_dict(torch.load(model_path))
    net_g.eval()
    for param in net_g.parameters():
        param.requires_grad = False

    brush_large_vertical = read_img('brush/brush_large_vertical.png', 'L').to(device)
    brush_large_horizontal = read_img('brush/brush_large_horizontal.png', 'L').to(device)
    meta_brushes = torch.cat(
        [brush_large_vertical, brush_large_horizontal], dim=0)

    with torch.no_grad():
        original_img = read_img(input_path, 'RGB', resize_h, resize_w).to(device)
        original_h, original_w = original_img.shape[-2:]
        K = max(math.ceil(math.log2(max(original_h, original_w) / patch_size)), 0)
        original_img_pad_size = patch_size * (2 ** K)
        original_img_pad = pad(original_img, original_img_pad_size, original_img_pad_size)
        final_result = torch.zeros_like(original_img_pad).to(device)
        all_frames = []
        for layer in range(0, K + 1):
            layer_size = patch_size * (2 ** layer)
            img = F.interpolate(original_img_pad, (layer_size, layer_size))
            result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
            img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size))
            result_patch = F.unfold(result, (patch_size, patch_size),
                                    stride=(patch_size, patch_size))
            # There are patch_num * patch_num patches in total
            patch_num = (layer_size - patch_size) // patch_size + 1

            # img_patch, result_patch: b, 3 * output_size * output_size, h * w
            img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
            result_patch = result_patch.permute(0, 2, 1).contiguous().view(
                -1, 3, patch_size, patch_size).contiguous()
            shape_param, stroke_decision = net_g(img_patch, result_patch)
            stroke_decision = network.SignWithSigmoidGrad.apply(stroke_decision)

            grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
            img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
                img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
            color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view(
                img_patch.shape[0], stroke_num, 3).contiguous()
            stroke_param = torch.cat([shape_param, color], dim=-1)
            # stroke_param: b * h * w, stroke_per_patch, param_per_stroke
            # stroke_decision: b * h * w, stroke_per_patch, 1
            param = stroke_param.view(1, patch_num, patch_num, stroke_num, 8).contiguous()
            decision = stroke_decision.view(1, patch_num, patch_num, stroke_num).contiguous().bool()
            # param: b, h, w, stroke_per_patch, 8
            # decision: b, h, w, stroke_per_patch
            param[..., :2] = param[..., :2] / 2 + 0.25
            param[..., 2:4] = param[..., 2:4] / 2
            if serial:
                final_result = param2img_serial(param, decision, meta_brushes, final_result,
                                                frame_dir, False, original_h, original_w, all_frames = all_frames)
            else:
                final_result = param2img_parallel(param, decision, meta_brushes, final_result)

        border_size = original_img_pad_size // (2 * patch_num)
        img = F.interpolate(original_img_pad, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
        result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
        img = F.pad(img, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2,
                          0, 0, 0, 0])
        result = F.pad(result, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2,
                                0, 0, 0, 0])
        img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size))
        result_patch = F.unfold(result, (patch_size, patch_size), stride=(patch_size, patch_size))
        final_result = F.pad(final_result, [border_size, border_size, border_size, border_size, 0, 0, 0, 0])
        h = (img.shape[2] - patch_size) // patch_size + 1
        w = (img.shape[3] - patch_size) // patch_size + 1
        # img_patch, result_patch: b, 3 * output_size * output_size, h * w
        img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
        result_patch = result_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
        shape_param, stroke_decision = net_g(img_patch, result_patch)

        grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
        img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
            img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
        color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view(
            img_patch.shape[0], stroke_num, 3).contiguous()
        stroke_param = torch.cat([shape_param, color], dim=-1)
        # stroke_param: b * h * w, stroke_per_patch, param_per_stroke
        # stroke_decision: b * h * w, stroke_per_patch, 1
        param = stroke_param.view(1, h, w, stroke_num, 8).contiguous()
        decision = stroke_decision.view(1, h, w, stroke_num).contiguous().bool()
        # param: b, h, w, stroke_per_patch, 8
        # decision: b, h, w, stroke_per_patch
        param[..., :2] = param[..., :2] / 2 + 0.25
        param[..., 2:4] = param[..., 2:4] / 2
        if serial:
            final_result = param2img_serial(param, decision, meta_brushes, final_result,
                                            frame_dir, True, original_h, original_w, all_frames = all_frames)
        else:
            final_result = param2img_parallel(param, decision, meta_brushes, final_result)
        final_result = final_result[:, :, border_size:-border_size, border_size:-border_size]

        final_result = crop(final_result, original_h, original_w)
        save_img(final_result[0], output_path)
        tensor_to_pil = transforms.ToPILImage()(final_result[0].squeeze_(0))
        #return tensor_to_pil

        all_frames[0].save(os.path.join(frame_dir, 'animation.gif'),
               save_all=True, append_images=all_frames[1:], optimize=False, duration=40, loop=0)
        return os.path.join(frame_dir, "animation.gif"), tensor_to_pil


def gradio_inference(image):
    return main(input_path=image.name,
         model_path='model.pth',
         output_dir='output/',
         need_animation=True,  # whether need intermediate results for animation.
         resize_h=300,         # resize original input to this size. None means do not resize.
         resize_w=300,         # resize original input to this size. None means do not resize.
         serial=True)          # if need animation, serial must be True.

title = "Paint Transformer"
description = "Gradio demo for Paint Transformer: Feed Forward Neural Painting with Stroke Prediction. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.03798'>Paint Transformer: Feed Forward Neural Painting with Stroke Prediction</a> | <a href='https://github.com/Huage001/PaintTransformer'>Github Repo</a></p>"

gr.Interface(
    gradio_inference, 
    gr.inputs.Image(type="file", label="Input"), 
    [gr.outputs.Image(type="file", label="Output GIF"),
    gr.outputs.Image(type="pil", label="Output Image")],
    title=title,
    description=description,
    article=article,
    examples=[
    ['city.jpg'],
    ['tower.jpg']
    ]
    ).launch(debug=True)