Spaces:
Running
Running
''' | |
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) | |
@author: yangxy ([email protected]) | |
''' | |
import os | |
import cv2 | |
import glob | |
import time | |
import numpy as np | |
from PIL import Image | |
import __init_paths | |
from face_model.face_gan import FaceGAN | |
class Segmentation2Face(object): | |
def __init__(self, base_dir='./', size=1024, model=None, channel_multiplier=2, narrow=1, is_norm=True): | |
self.facegan = FaceGAN(base_dir, size, model, channel_multiplier, narrow, is_norm) | |
# make sure the face image is well aligned. Please refer to face_enhancement.py | |
def process(self, segf): | |
# from segmentations to faces | |
out = self.facegan.process(segf) | |
return out | |
if __name__=='__main__': | |
model = {'name':'GPEN-Seg2face-512', 'size':512} | |
indir = 'examples/segs' | |
outdir = 'examples/outs-seg2face' | |
os.makedirs(outdir, exist_ok=True) | |
seg2face = Segmentation2Face(size=model['size'], model=model['name'], channel_multiplier=2, is_norm=False) | |
files = sorted(glob.glob(os.path.join(indir, '*.*g'))) | |
for n, file in enumerate(files[:]): | |
filename = os.path.basename(file) | |
segf = cv2.imread(file, cv2.IMREAD_COLOR) | |
realf = seg2face.process(segf) | |
segf = cv2.resize(segf, realf.shape[:2]) | |
cv2.imwrite(os.path.join(outdir, '.'.join(filename.split('.')[:-1])+'.jpg'), np.hstack((segf, realf))) | |
if n%10==0: print(n, file) | |