GPEN / loss /id_loss.py
AK391
files
2782137
import os
import torch
from torch import nn
from model_irse import Backbone
class IDLoss(nn.Module):
def __init__(self, base_dir='./', device='cuda', ckpt_dict=None):
super(IDLoss, self).__init__()
print('Loading ResNet ArcFace')
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se').to(device)
if ckpt_dict is None:
self.facenet.load_state_dict(torch.load(os.path.join(base_dir, 'weights', 'model_ir_se50.pth'), map_location=torch.device('cpu')))
else:
self.facenet.load_state_dict(ckpt_dict)
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
self.facenet.eval()
def extract_feats(self, x):
_, _, h, w = x.shape
assert h==w
ss = h//256
x = x[:, :, 35*ss:-33*ss, 32*ss:-36*ss] # Crop interesting region
x = self.face_pool(x)
x_feats = self.facenet(x)
return x_feats
def forward(self, y_hat, y, x):
n_samples = x.shape[0]
x_feats = self.extract_feats(x)
y_feats = self.extract_feats(y) # Otherwise use the feature from there
y_hat_feats = self.extract_feats(y_hat)
y_feats = y_feats.detach()
loss = 0
sim_improvement = 0
id_logs = []
count = 0
for i in range(n_samples):
diff_target = y_hat_feats[i].dot(y_feats[i])
diff_input = y_hat_feats[i].dot(x_feats[i])
diff_views = y_feats[i].dot(x_feats[i])
id_logs.append({'diff_target': float(diff_target),
'diff_input': float(diff_input),
'diff_views': float(diff_views)})
loss += 1 - diff_target
id_diff = float(diff_target) - float(diff_views)
sim_improvement += id_diff
count += 1
return loss / count, sim_improvement / count, id_logs