Spaces:
Running
Running
''' | |
@Created by chaofengc ([email protected]) | |
@Modified by yangxy ([email protected]) | |
''' | |
from blocks import * | |
import torch | |
from torch import nn | |
import numpy as np | |
def define_P(in_size=512, out_size=512, min_feat_size=32, relu_type='LeakyReLU', isTrain=False, weight_path=None): | |
net = ParseNet(in_size, out_size, min_feat_size, 64, 19, norm_type='bn', relu_type=relu_type, ch_range=[32, 256]) | |
if not isTrain: | |
net.eval() | |
if weight_path is not None: | |
net.load_state_dict(torch.load(weight_path)) | |
return net | |
class ParseNet(nn.Module): | |
def __init__(self, | |
in_size=128, | |
out_size=128, | |
min_feat_size=32, | |
base_ch=64, | |
parsing_ch=19, | |
res_depth=10, | |
relu_type='prelu', | |
norm_type='bn', | |
ch_range=[32, 512], | |
): | |
super().__init__() | |
self.res_depth = res_depth | |
act_args = {'norm_type': norm_type, 'relu_type': relu_type} | |
min_ch, max_ch = ch_range | |
ch_clip = lambda x: max(min_ch, min(x, max_ch)) | |
min_feat_size = min(in_size, min_feat_size) | |
down_steps = int(np.log2(in_size//min_feat_size)) | |
up_steps = int(np.log2(out_size//min_feat_size)) | |
# =============== define encoder-body-decoder ==================== | |
self.encoder = [] | |
self.encoder.append(ConvLayer(3, base_ch, 3, 1)) | |
head_ch = base_ch | |
for i in range(down_steps): | |
cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2) | |
self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args)) | |
head_ch = head_ch * 2 | |
self.body = [] | |
for i in range(res_depth): | |
self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args)) | |
self.decoder = [] | |
for i in range(up_steps): | |
cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2) | |
self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args)) | |
head_ch = head_ch // 2 | |
self.encoder = nn.Sequential(*self.encoder) | |
self.body = nn.Sequential(*self.body) | |
self.decoder = nn.Sequential(*self.decoder) | |
self.out_img_conv = ConvLayer(ch_clip(head_ch), 3) | |
self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch) | |
def forward(self, x): | |
feat = self.encoder(x) | |
x = feat + self.body(feat) | |
x = self.decoder(x) | |
out_img = self.out_img_conv(x) | |
out_mask = self.out_mask_conv(x) | |
return out_mask, out_img | |