GPEN / face_parse /face_parsing.py
AK391
files
2782137
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy ([email protected])
'''
import os
import cv2
import torch
import numpy as np
from parse_model import ParseNet
import torch.nn.functional as F
class FaceParse(object):
def __init__(self, base_dir='./', model='ParseNet-latest', device='cuda'):
self.mfile = os.path.join(base_dir, 'weights', model+'.pth')
self.size = 512
self.device = device
'''
0: 'background' 1: 'skin' 2: 'nose'
3: 'eye_g' 4: 'l_eye' 5: 'r_eye'
6: 'l_brow' 7: 'r_brow' 8: 'l_ear'
9: 'r_ear' 10: 'mouth' 11: 'u_lip'
12: 'l_lip' 13: 'hair' 14: 'hat'
15: 'ear_r' 16: 'neck_l' 17: 'neck'
18: 'cloth'
'''
#self.MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]]
#self.#MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [0, 0, 0], [0, 0, 0]]
self.MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
self.load_model()
def load_model(self):
self.faceparse = ParseNet(self.size, self.size, 32, 64, 19, norm_type='bn', relu_type='LeakyReLU', ch_range=[32, 256])
self.faceparse.load_state_dict(torch.load(self.mfile, map_location=torch.device('cpu')))
self.faceparse.to(self.device)
self.faceparse.eval()
def process(self, im):
im = cv2.resize(im, (self.size, self.size))
imt = self.img2tensor(im)
pred_mask, sr_img_tensor = self.faceparse(imt)
mask = self.tenor2mask(pred_mask)
return mask
def process_tensor(self, imt):
imt = F.interpolate(imt.flip(1)*2-1, (self.size, self.size))
pred_mask, sr_img_tensor = self.faceparse(imt)
mask = pred_mask.argmax(dim=1)
for idx, color in enumerate(self.MASK_COLORMAP):
mask = torch.where(mask==idx, color, mask)
#mask = mask.repeat(3, 1, 1).unsqueeze(0) #.cpu().float().numpy()
mask = mask.unsqueeze(0)
return mask
def img2tensor(self, img):
img = img[..., ::-1]
img = img / 255. * 2 - 1
img_tensor = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).to(self.device)
return img_tensor.float()
def tenor2mask(self, tensor):
if len(tensor.shape) < 4:
tensor = tensor.unsqueeze(0)
if tensor.shape[1] > 1:
tensor = tensor.argmax(dim=1)
tensor = tensor.squeeze(1).data.cpu().numpy()
color_maps = []
for t in tensor:
#tmp_img = np.zeros(tensor.shape[1:] + (3,))
tmp_img = np.zeros(tensor.shape[1:])
for idx, color in enumerate(self.MASK_COLORMAP):
tmp_img[t == idx] = color
color_maps.append(tmp_img.astype(np.uint8))
return color_maps