Spaces:
Running
Running
''' | |
This is a simplified training code of GPEN. It achieves comparable performance as in the paper. | |
@Created by rosinality | |
@Modified by yangxy ([email protected]) | |
''' | |
import argparse | |
import math | |
import random | |
import os | |
import cv2 | |
import glob | |
from tqdm import tqdm | |
import torch | |
from torch import nn, autograd, optim | |
from torch.nn import functional as F | |
from torch.utils import data | |
import torch.distributed as dist | |
from torchvision import transforms, utils | |
import __init_paths | |
from data_loader.dataset_face import FaceDataset | |
from face_model.gpen_model import FullGenerator, Discriminator | |
from loss.id_loss import IDLoss | |
from distributed import ( | |
get_rank, | |
synchronize, | |
reduce_loss_dict, | |
reduce_sum, | |
get_world_size, | |
) | |
import lpips | |
def data_sampler(dataset, shuffle, distributed): | |
if distributed: | |
return data.distributed.DistributedSampler(dataset, shuffle=shuffle) | |
if shuffle: | |
return data.RandomSampler(dataset) | |
else: | |
return data.SequentialSampler(dataset) | |
def requires_grad(model, flag=True): | |
for p in model.parameters(): | |
p.requires_grad = flag | |
def accumulate(model1, model2, decay=0.999): | |
par1 = dict(model1.named_parameters()) | |
par2 = dict(model2.named_parameters()) | |
for k in par1.keys(): | |
par1[k].data.mul_(decay).add_(1 - decay, par2[k].data) | |
def sample_data(loader): | |
while True: | |
for batch in loader: | |
yield batch | |
def d_logistic_loss(real_pred, fake_pred): | |
real_loss = F.softplus(-real_pred) | |
fake_loss = F.softplus(fake_pred) | |
return real_loss.mean() + fake_loss.mean() | |
def d_r1_loss(real_pred, real_img): | |
grad_real, = autograd.grad( | |
outputs=real_pred.sum(), inputs=real_img, create_graph=True | |
) | |
grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean() | |
return grad_penalty | |
def g_nonsaturating_loss(fake_pred, loss_funcs=None, fake_img=None, real_img=None, input_img=None): | |
smooth_l1_loss, id_loss = loss_funcs | |
loss = F.softplus(-fake_pred).mean() | |
loss_l1 = smooth_l1_loss(fake_img, real_img) | |
loss_id, __, __ = id_loss(fake_img, real_img, input_img) | |
loss += 1.0*loss_l1 + 1.0*loss_id | |
return loss | |
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01): | |
noise = torch.randn_like(fake_img) / math.sqrt( | |
fake_img.shape[2] * fake_img.shape[3] | |
) | |
grad, = autograd.grad( | |
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True | |
) | |
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1)) | |
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length) | |
path_penalty = (path_lengths - path_mean).pow(2).mean() | |
return path_penalty, path_mean.detach(), path_lengths | |
def validation(model, lpips_func, args, device): | |
lq_files = sorted(glob.glob(os.path.join(args.val_dir, 'lq', '*.*'))) | |
hq_files = sorted(glob.glob(os.path.join(args.val_dir, 'hq', '*.*'))) | |
assert len(lq_files) == len(hq_files) | |
dist_sum = 0 | |
model.eval() | |
for lq_f, hq_f in zip(lq_files, hq_files): | |
img_lq = cv2.imread(lq_f, cv2.IMREAD_COLOR) | |
img_t = torch.from_numpy(img_lq).to(device).permute(2, 0, 1).unsqueeze(0) | |
img_t = (img_t/255.-0.5)/0.5 | |
img_t = F.interpolate(img_t, (args.size, args.size)) | |
img_t = torch.flip(img_t, [1]) | |
with torch.no_grad(): | |
img_out, __ = model(img_t) | |
img_hq = lpips.im2tensor(lpips.load_image(hq_f)).to(device) | |
img_hq = F.interpolate(img_hq, (args.size, args.size)) | |
dist_sum += lpips_func.forward(img_out, img_hq) | |
return dist_sum.data/len(lq_files) | |
def train(args, loader, generator, discriminator, losses, g_optim, d_optim, g_ema, lpips_func, device): | |
loader = sample_data(loader) | |
pbar = range(0, args.iter) | |
if get_rank() == 0: | |
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01) | |
mean_path_length = 0 | |
d_loss_val = 0 | |
r1_loss = torch.tensor(0.0, device=device) | |
g_loss_val = 0 | |
path_loss = torch.tensor(0.0, device=device) | |
path_lengths = torch.tensor(0.0, device=device) | |
mean_path_length_avg = 0 | |
loss_dict = {} | |
if args.distributed: | |
g_module = generator.module | |
d_module = discriminator.module | |
else: | |
g_module = generator | |
d_module = discriminator | |
accum = 0.5 ** (32 / (10 * 1000)) | |
for idx in pbar: | |
i = idx + args.start_iter | |
if i > args.iter: | |
print('Done!') | |
break | |
degraded_img, real_img = next(loader) | |
degraded_img = degraded_img.to(device) | |
real_img = real_img.to(device) | |
requires_grad(generator, False) | |
requires_grad(discriminator, True) | |
fake_img, _ = generator(degraded_img) | |
fake_pred = discriminator(fake_img) | |
real_pred = discriminator(real_img) | |
d_loss = d_logistic_loss(real_pred, fake_pred) | |
loss_dict['d'] = d_loss | |
loss_dict['real_score'] = real_pred.mean() | |
loss_dict['fake_score'] = fake_pred.mean() | |
discriminator.zero_grad() | |
d_loss.backward() | |
d_optim.step() | |
d_regularize = i % args.d_reg_every == 0 | |
if d_regularize: | |
real_img.requires_grad = True | |
real_pred = discriminator(real_img) | |
r1_loss = d_r1_loss(real_pred, real_img) | |
discriminator.zero_grad() | |
(args.r1 / 2 * r1_loss * args.d_reg_every + 0 * real_pred[0]).backward() | |
d_optim.step() | |
loss_dict['r1'] = r1_loss | |
requires_grad(generator, True) | |
requires_grad(discriminator, False) | |
fake_img, _ = generator(degraded_img) | |
fake_pred = discriminator(fake_img) | |
g_loss = g_nonsaturating_loss(fake_pred, losses, fake_img, real_img, degraded_img) | |
loss_dict['g'] = g_loss | |
generator.zero_grad() | |
g_loss.backward() | |
g_optim.step() | |
g_regularize = i % args.g_reg_every == 0 | |
if g_regularize: | |
path_batch_size = max(1, args.batch // args.path_batch_shrink) | |
fake_img, latents = generator(degraded_img, return_latents=True) | |
path_loss, mean_path_length, path_lengths = g_path_regularize( | |
fake_img, latents, mean_path_length | |
) | |
generator.zero_grad() | |
weighted_path_loss = args.path_regularize * args.g_reg_every * path_loss | |
if args.path_batch_shrink: | |
weighted_path_loss += 0 * fake_img[0, 0, 0, 0] | |
weighted_path_loss.backward() | |
g_optim.step() | |
mean_path_length_avg = ( | |
reduce_sum(mean_path_length).item() / get_world_size() | |
) | |
loss_dict['path'] = path_loss | |
loss_dict['path_length'] = path_lengths.mean() | |
accumulate(g_ema, g_module, accum) | |
loss_reduced = reduce_loss_dict(loss_dict) | |
d_loss_val = loss_reduced['d'].mean().item() | |
g_loss_val = loss_reduced['g'].mean().item() | |
r1_val = loss_reduced['r1'].mean().item() | |
path_loss_val = loss_reduced['path'].mean().item() | |
real_score_val = loss_reduced['real_score'].mean().item() | |
fake_score_val = loss_reduced['fake_score'].mean().item() | |
path_length_val = loss_reduced['path_length'].mean().item() | |
if get_rank() == 0: | |
pbar.set_description( | |
( | |
f'd: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; ' | |
) | |
) | |
if i % args.save_freq == 0: | |
with torch.no_grad(): | |
g_ema.eval() | |
sample, _ = g_ema(degraded_img) | |
sample = torch.cat((degraded_img, sample, real_img), 0) | |
utils.save_image( | |
sample, | |
f'{args.sample}/{str(i).zfill(6)}.png', | |
nrow=args.batch, | |
normalize=True, | |
range=(-1, 1), | |
) | |
lpips_value = validation(g_ema, lpips_func, args, device) | |
print(f'{i}/{args.iter}: lpips: {lpips_value.cpu().numpy()[0][0][0][0]}') | |
if i and i % args.save_freq == 0: | |
torch.save( | |
{ | |
'g': g_module.state_dict(), | |
'd': d_module.state_dict(), | |
'g_ema': g_ema.state_dict(), | |
'g_optim': g_optim.state_dict(), | |
'd_optim': d_optim.state_dict(), | |
}, | |
f'{args.ckpt}/{str(i).zfill(6)}.pth', | |
) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--path', type=str, required=True) | |
parser.add_argument('--base_dir', type=str, default='./') | |
parser.add_argument('--iter', type=int, default=4000000) | |
parser.add_argument('--batch', type=int, default=4) | |
parser.add_argument('--size', type=int, default=256) | |
parser.add_argument('--channel_multiplier', type=int, default=2) | |
parser.add_argument('--narrow', type=float, default=1.0) | |
parser.add_argument('--r1', type=float, default=10) | |
parser.add_argument('--path_regularize', type=float, default=2) | |
parser.add_argument('--path_batch_shrink', type=int, default=2) | |
parser.add_argument('--d_reg_every', type=int, default=16) | |
parser.add_argument('--g_reg_every', type=int, default=4) | |
parser.add_argument('--save_freq', type=int, default=10000) | |
parser.add_argument('--lr', type=float, default=0.002) | |
parser.add_argument('--local_rank', type=int, default=0) | |
parser.add_argument('--ckpt', type=str, default='ckpts') | |
parser.add_argument('--pretrain', type=str, default=None) | |
parser.add_argument('--sample', type=str, default='sample') | |
parser.add_argument('--val_dir', type=str, default='val') | |
args = parser.parse_args() | |
os.makedirs(args.ckpt, exist_ok=True) | |
os.makedirs(args.sample, exist_ok=True) | |
device = 'cuda' | |
n_gpu = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 | |
args.distributed = n_gpu > 1 | |
if args.distributed: | |
torch.cuda.set_device(args.local_rank) | |
torch.distributed.init_process_group(backend='nccl', init_method='env://') | |
synchronize() | |
args.latent = 512 | |
args.n_mlp = 8 | |
args.start_iter = 0 | |
generator = FullGenerator( | |
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device | |
).to(device) | |
discriminator = Discriminator( | |
args.size, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device | |
).to(device) | |
g_ema = FullGenerator( | |
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device | |
).to(device) | |
g_ema.eval() | |
accumulate(g_ema, generator, 0) | |
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1) | |
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1) | |
g_optim = optim.Adam( | |
generator.parameters(), | |
lr=args.lr * g_reg_ratio, | |
betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio), | |
) | |
d_optim = optim.Adam( | |
discriminator.parameters(), | |
lr=args.lr * d_reg_ratio, | |
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio), | |
) | |
if args.pretrain is not None: | |
print('load model:', args.pretrain) | |
ckpt = torch.load(args.pretrain) | |
generator.load_state_dict(ckpt['g']) | |
discriminator.load_state_dict(ckpt['d']) | |
g_ema.load_state_dict(ckpt['g_ema']) | |
g_optim.load_state_dict(ckpt['g_optim']) | |
d_optim.load_state_dict(ckpt['d_optim']) | |
smooth_l1_loss = torch.nn.SmoothL1Loss().to(device) | |
id_loss = IDLoss(args.base_dir, device, ckpt_dict=None) | |
lpips_func = lpips.LPIPS(net='alex',version='0.1').to(device) | |
if args.distributed: | |
generator = nn.parallel.DistributedDataParallel( | |
generator, | |
device_ids=[args.local_rank], | |
output_device=args.local_rank, | |
broadcast_buffers=False, | |
) | |
discriminator = nn.parallel.DistributedDataParallel( | |
discriminator, | |
device_ids=[args.local_rank], | |
output_device=args.local_rank, | |
broadcast_buffers=False, | |
) | |
id_loss = nn.parallel.DistributedDataParallel( | |
id_loss, | |
device_ids=[args.local_rank], | |
output_device=args.local_rank, | |
broadcast_buffers=False, | |
) | |
dataset = FaceDataset(args.path, args.size) | |
loader = data.DataLoader( | |
dataset, | |
batch_size=args.batch, | |
sampler=data_sampler(dataset, shuffle=True, distributed=args.distributed), | |
drop_last=True, | |
) | |
train(args, loader, generator, discriminator, [smooth_l1_loss, id_loss], g_optim, d_optim, g_ema, lpips_func, device) | |