Spaces:
Running
Running
''' | |
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) | |
@author: yangxy ([email protected]) | |
''' | |
import math | |
import random | |
import functools | |
import operator | |
import itertools | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.autograd import Function | |
from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d | |
class PixelNorm(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, input): | |
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8) | |
def make_kernel(k): | |
k = torch.tensor(k, dtype=torch.float32) | |
if k.ndim == 1: | |
k = k[None, :] * k[:, None] | |
k /= k.sum() | |
return k | |
class Upsample(nn.Module): | |
def __init__(self, kernel, factor=2, device='cpu'): | |
super().__init__() | |
self.factor = factor | |
kernel = make_kernel(kernel) * (factor ** 2) | |
self.register_buffer('kernel', kernel) | |
p = kernel.shape[0] - factor | |
pad0 = (p + 1) // 2 + factor - 1 | |
pad1 = p // 2 | |
self.pad = (pad0, pad1) | |
self.device = device | |
def forward(self, input): | |
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad, device=self.device) | |
return out | |
class Downsample(nn.Module): | |
def __init__(self, kernel, factor=2, device='cpu'): | |
super().__init__() | |
self.factor = factor | |
kernel = make_kernel(kernel) | |
self.register_buffer('kernel', kernel) | |
p = kernel.shape[0] - factor | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
self.pad = (pad0, pad1) | |
self.device = device | |
def forward(self, input): | |
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad, device=self.device) | |
return out | |
class Blur(nn.Module): | |
def __init__(self, kernel, pad, upsample_factor=1, device='cpu'): | |
super().__init__() | |
kernel = make_kernel(kernel) | |
if upsample_factor > 1: | |
kernel = kernel * (upsample_factor ** 2) | |
self.register_buffer('kernel', kernel) | |
self.pad = pad | |
self.device = device | |
def forward(self, input): | |
out = upfirdn2d(input, self.kernel, pad=self.pad, device=self.device) | |
return out | |
class EqualConv2d(nn.Module): | |
def __init__( | |
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True | |
): | |
super().__init__() | |
self.weight = nn.Parameter( | |
torch.randn(out_channel, in_channel, kernel_size, kernel_size) | |
) | |
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) | |
self.stride = stride | |
self.padding = padding | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_channel)) | |
else: | |
self.bias = None | |
def forward(self, input): | |
out = F.conv2d( | |
input, | |
self.weight * self.scale, | |
bias=self.bias, | |
stride=self.stride, | |
padding=self.padding, | |
) | |
return out | |
def __repr__(self): | |
return ( | |
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' | |
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' | |
) | |
class EqualLinear(nn.Module): | |
def __init__( | |
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None, device='cpu' | |
): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
else: | |
self.bias = None | |
self.activation = activation | |
self.device = device | |
self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
self.lr_mul = lr_mul | |
def forward(self, input): | |
if self.activation: | |
out = F.linear(input, self.weight * self.scale) | |
out = fused_leaky_relu(out, self.bias * self.lr_mul, device=self.device) | |
else: | |
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) | |
return out | |
def __repr__(self): | |
return ( | |
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' | |
) | |
class ScaledLeakyReLU(nn.Module): | |
def __init__(self, negative_slope=0.2): | |
super().__init__() | |
self.negative_slope = negative_slope | |
def forward(self, input): | |
out = F.leaky_relu(input, negative_slope=self.negative_slope) | |
return out * math.sqrt(2) | |
class ModulatedConv2d(nn.Module): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
style_dim, | |
demodulate=True, | |
upsample=False, | |
downsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
device='cpu' | |
): | |
super().__init__() | |
self.eps = 1e-8 | |
self.kernel_size = kernel_size | |
self.in_channel = in_channel | |
self.out_channel = out_channel | |
self.upsample = upsample | |
self.downsample = downsample | |
if upsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) - (kernel_size - 1) | |
pad0 = (p + 1) // 2 + factor - 1 | |
pad1 = p // 2 + 1 | |
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor, device=device) | |
if downsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
self.blur = Blur(blur_kernel, pad=(pad0, pad1), device=device) | |
fan_in = in_channel * kernel_size ** 2 | |
self.scale = 1 / math.sqrt(fan_in) | |
self.padding = kernel_size // 2 | |
self.weight = nn.Parameter( | |
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size) | |
) | |
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) | |
self.demodulate = demodulate | |
def __repr__(self): | |
return ( | |
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, ' | |
f'upsample={self.upsample}, downsample={self.downsample})' | |
) | |
def forward(self, input, style): | |
batch, in_channel, height, width = input.shape | |
style = self.modulation(style).view(batch, 1, in_channel, 1, 1) | |
weight = self.scale * self.weight * style | |
if self.demodulate: | |
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) | |
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) | |
weight = weight.view( | |
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size | |
) | |
if self.upsample: | |
input = input.view(1, batch * in_channel, height, width) | |
weight = weight.view( | |
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size | |
) | |
weight = weight.transpose(1, 2).reshape( | |
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size | |
) | |
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
out = self.blur(out) | |
elif self.downsample: | |
input = self.blur(input) | |
_, _, height, width = input.shape | |
input = input.view(1, batch * in_channel, height, width) | |
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
else: | |
input = input.view(1, batch * in_channel, height, width) | |
out = F.conv2d(input, weight, padding=self.padding, groups=batch) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
return out | |
class NoiseInjection(nn.Module): | |
def __init__(self, isconcat=True): | |
super().__init__() | |
self.isconcat = isconcat | |
self.weight = nn.Parameter(torch.zeros(1)) | |
def forward(self, image, noise=None): | |
if noise is None: | |
batch, _, height, width = image.shape | |
noise = image.new_empty(batch, 1, height, width).normal_() | |
if self.isconcat: | |
return torch.cat((image, self.weight * noise), dim=1) | |
else: | |
return image + self.weight * noise | |
class ConstantInput(nn.Module): | |
def __init__(self, channel, size=4): | |
super().__init__() | |
self.input = nn.Parameter(torch.randn(1, channel, size, size)) | |
def forward(self, input): | |
batch = input.shape[0] | |
out = self.input.repeat(batch, 1, 1, 1) | |
return out | |
class StyledConv(nn.Module): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
style_dim, | |
upsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
demodulate=True, | |
isconcat=True, | |
device='cpu' | |
): | |
super().__init__() | |
self.conv = ModulatedConv2d( | |
in_channel, | |
out_channel, | |
kernel_size, | |
style_dim, | |
upsample=upsample, | |
blur_kernel=blur_kernel, | |
demodulate=demodulate, | |
device=device | |
) | |
self.noise = NoiseInjection(isconcat) | |
#self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) | |
#self.activate = ScaledLeakyReLU(0.2) | |
feat_multiplier = 2 if isconcat else 1 | |
self.activate = FusedLeakyReLU(out_channel*feat_multiplier, device=device) | |
def forward(self, input, style, noise=None): | |
out = self.conv(input, style) | |
out = self.noise(out, noise=noise) | |
# out = out + self.bias | |
out = self.activate(out) | |
return out | |
class ToRGB(nn.Module): | |
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1], device='cpu'): | |
super().__init__() | |
if upsample: | |
self.upsample = Upsample(blur_kernel, device=device) | |
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False, device=device) | |
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) | |
def forward(self, input, style, skip=None): | |
out = self.conv(input, style) | |
out = out + self.bias | |
if skip is not None: | |
skip = self.upsample(skip) | |
out = out + skip | |
return out | |
class Generator(nn.Module): | |
def __init__( | |
self, | |
size, | |
style_dim, | |
n_mlp, | |
channel_multiplier=2, | |
blur_kernel=[1, 3, 3, 1], | |
lr_mlp=0.01, | |
isconcat=True, | |
narrow=1, | |
device='cpu' | |
): | |
super().__init__() | |
self.size = size | |
self.n_mlp = n_mlp | |
self.style_dim = style_dim | |
self.feat_multiplier = 2 if isconcat else 1 | |
layers = [PixelNorm()] | |
for i in range(n_mlp): | |
layers.append( | |
EqualLinear( | |
style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu', device=device | |
) | |
) | |
self.style = nn.Sequential(*layers) | |
self.channels = { | |
4: int(512 * narrow), | |
8: int(512 * narrow), | |
16: int(512 * narrow), | |
32: int(512 * narrow), | |
64: int(256 * channel_multiplier * narrow), | |
128: int(128 * channel_multiplier * narrow), | |
256: int(64 * channel_multiplier * narrow), | |
512: int(32 * channel_multiplier * narrow), | |
1024: int(16 * channel_multiplier * narrow) | |
} | |
self.input = ConstantInput(self.channels[4]) | |
self.conv1 = StyledConv( | |
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel, isconcat=isconcat, device=device | |
) | |
self.to_rgb1 = ToRGB(self.channels[4]*self.feat_multiplier, style_dim, upsample=False, device=device) | |
self.log_size = int(math.log(size, 2)) | |
self.convs = nn.ModuleList() | |
self.upsamples = nn.ModuleList() | |
self.to_rgbs = nn.ModuleList() | |
in_channel = self.channels[4] | |
for i in range(3, self.log_size + 1): | |
out_channel = self.channels[2 ** i] | |
self.convs.append( | |
StyledConv( | |
in_channel*self.feat_multiplier, | |
out_channel, | |
3, | |
style_dim, | |
upsample=True, | |
blur_kernel=blur_kernel, | |
isconcat=isconcat, | |
device=device | |
) | |
) | |
self.convs.append( | |
StyledConv( | |
out_channel*self.feat_multiplier, out_channel, 3, style_dim, blur_kernel=blur_kernel, isconcat=isconcat, device=device | |
) | |
) | |
self.to_rgbs.append(ToRGB(out_channel*self.feat_multiplier, style_dim, device=device)) | |
in_channel = out_channel | |
self.n_latent = self.log_size * 2 - 2 | |
def make_noise(self): | |
device = self.input.input.device | |
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)] | |
for i in range(3, self.log_size + 1): | |
for _ in range(2): | |
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device)) | |
return noises | |
def mean_latent(self, n_latent): | |
latent_in = torch.randn( | |
n_latent, self.style_dim, device=self.input.input.device | |
) | |
latent = self.style(latent_in).mean(0, keepdim=True) | |
return latent | |
def get_latent(self, input): | |
return self.style(input) | |
def forward( | |
self, | |
styles, | |
return_latents=False, | |
inject_index=None, | |
truncation=1, | |
truncation_latent=None, | |
input_is_latent=False, | |
noise=None, | |
): | |
if not input_is_latent: | |
styles = [self.style(s) for s in styles] | |
if noise is None: | |
''' | |
noise = [None] * (2 * (self.log_size - 2) + 1) | |
''' | |
noise = [] | |
batch = styles[0].shape[0] | |
for i in range(self.n_mlp + 1): | |
size = 2 ** (i+2) | |
noise.append(torch.randn(batch, self.channels[size], size, size, device=styles[0].device)) | |
if truncation < 1: | |
style_t = [] | |
for style in styles: | |
style_t.append( | |
truncation_latent + truncation * (style - truncation_latent) | |
) | |
styles = style_t | |
if len(styles) < 2: | |
inject_index = self.n_latent | |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
else: | |
if inject_index is None: | |
inject_index = random.randint(1, self.n_latent - 1) | |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1) | |
latent = torch.cat([latent, latent2], 1) | |
out = self.input(latent) | |
out = self.conv1(out, latent[:, 0], noise=noise[0]) | |
skip = self.to_rgb1(out, latent[:, 1]) | |
i = 1 | |
for conv1, conv2, noise1, noise2, to_rgb in zip( | |
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs | |
): | |
out = conv1(out, latent[:, i], noise=noise1) | |
out = conv2(out, latent[:, i + 1], noise=noise2) | |
skip = to_rgb(out, latent[:, i + 2], skip) | |
i += 2 | |
image = skip | |
if return_latents: | |
return image, latent | |
else: | |
return image, None | |
class ConvLayer(nn.Sequential): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
downsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
bias=True, | |
activate=True, | |
device='cpu' | |
): | |
layers = [] | |
if downsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
layers.append(Blur(blur_kernel, pad=(pad0, pad1), device=device)) | |
stride = 2 | |
self.padding = 0 | |
else: | |
stride = 1 | |
self.padding = kernel_size // 2 | |
layers.append( | |
EqualConv2d( | |
in_channel, | |
out_channel, | |
kernel_size, | |
padding=self.padding, | |
stride=stride, | |
bias=bias and not activate, | |
) | |
) | |
if activate: | |
if bias: | |
layers.append(FusedLeakyReLU(out_channel, device=device)) | |
else: | |
layers.append(ScaledLeakyReLU(0.2)) | |
super().__init__(*layers) | |
class ResBlock(nn.Module): | |
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], device='cpu'): | |
super().__init__() | |
self.conv1 = ConvLayer(in_channel, in_channel, 3, device=device) | |
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True, device=device) | |
self.skip = ConvLayer( | |
in_channel, out_channel, 1, downsample=True, activate=False, bias=False | |
) | |
def forward(self, input): | |
out = self.conv1(input) | |
out = self.conv2(out) | |
skip = self.skip(input) | |
out = (out + skip) / math.sqrt(2) | |
return out | |
class FullGenerator(nn.Module): | |
def __init__( | |
self, | |
size, | |
style_dim, | |
n_mlp, | |
channel_multiplier=2, | |
blur_kernel=[1, 3, 3, 1], | |
lr_mlp=0.01, | |
isconcat=True, | |
narrow=1, | |
device='cpu' | |
): | |
super().__init__() | |
channels = { | |
4: int(512 * narrow), | |
8: int(512 * narrow), | |
16: int(512 * narrow), | |
32: int(512 * narrow), | |
64: int(256 * channel_multiplier * narrow), | |
128: int(128 * channel_multiplier * narrow), | |
256: int(64 * channel_multiplier * narrow), | |
512: int(32 * channel_multiplier * narrow), | |
1024: int(16 * channel_multiplier * narrow) | |
} | |
self.log_size = int(math.log(size, 2)) | |
self.generator = Generator(size, style_dim, n_mlp, channel_multiplier=channel_multiplier, blur_kernel=blur_kernel, lr_mlp=lr_mlp, isconcat=isconcat, narrow=narrow, device=device) | |
conv = [ConvLayer(3, channels[size], 1, device=device)] | |
self.ecd0 = nn.Sequential(*conv) | |
in_channel = channels[size] | |
self.names = ['ecd%d'%i for i in range(self.log_size-1)] | |
for i in range(self.log_size, 2, -1): | |
out_channel = channels[2 ** (i - 1)] | |
#conv = [ResBlock(in_channel, out_channel, blur_kernel)] | |
conv = [ConvLayer(in_channel, out_channel, 3, downsample=True, device=device)] | |
setattr(self, self.names[self.log_size-i+1], nn.Sequential(*conv)) | |
in_channel = out_channel | |
self.final_linear = nn.Sequential(EqualLinear(channels[4] * 4 * 4, style_dim, activation='fused_lrelu', device=device)) | |
def forward(self, | |
inputs, | |
return_latents=False, | |
inject_index=None, | |
truncation=1, | |
truncation_latent=None, | |
input_is_latent=False, | |
): | |
noise = [] | |
for i in range(self.log_size-1): | |
ecd = getattr(self, self.names[i]) | |
inputs = ecd(inputs) | |
noise.append(inputs) | |
#print(inputs.shape) | |
inputs = inputs.view(inputs.shape[0], -1) | |
outs = self.final_linear(inputs) | |
#print(outs.shape) | |
noise = list(itertools.chain.from_iterable(itertools.repeat(x, 2) for x in noise))[::-1] | |
outs = self.generator([outs], return_latents, inject_index, truncation, truncation_latent, input_is_latent, noise=noise[1:]) | |
return outs | |
class Discriminator(nn.Module): | |
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], narrow=1, device='cpu'): | |
super().__init__() | |
channels = { | |
4: int(512 * narrow), | |
8: int(512 * narrow), | |
16: int(512 * narrow), | |
32: int(512 * narrow), | |
64: int(256 * channel_multiplier * narrow), | |
128: int(128 * channel_multiplier * narrow), | |
256: int(64 * channel_multiplier * narrow), | |
512: int(32 * channel_multiplier * narrow), | |
1024: int(16 * channel_multiplier * narrow) | |
} | |
convs = [ConvLayer(3, channels[size], 1, device=device)] | |
log_size = int(math.log(size, 2)) | |
in_channel = channels[size] | |
for i in range(log_size, 2, -1): | |
out_channel = channels[2 ** (i - 1)] | |
convs.append(ResBlock(in_channel, out_channel, blur_kernel, device=device)) | |
in_channel = out_channel | |
self.convs = nn.Sequential(*convs) | |
self.stddev_group = 4 | |
self.stddev_feat = 1 | |
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3, device=device) | |
self.final_linear = nn.Sequential( | |
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu', device=device), | |
EqualLinear(channels[4], 1), | |
) | |
def forward(self, input): | |
out = self.convs(input) | |
batch, channel, height, width = out.shape | |
group = min(batch, self.stddev_group) | |
stddev = out.view( | |
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width | |
) | |
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) | |
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) | |
stddev = stddev.repeat(group, 1, height, width) | |
out = torch.cat([out, stddev], 1) | |
out = self.final_conv(out) | |
out = out.view(batch, -1) | |
out = self.final_linear(out) | |
return out | |