AK391 commited on
Commit
01d08da
·
1 Parent(s): 0145b71
ffhq_dataset/README.md ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Download *shape_predictor_68_face_landmarks.dat* here
2
+
3
+ ```bash
4
+ wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
5
+ bzip2 -dk shape_predictor_68_face_landmarks.dat.bz2
6
+ ```
ffhq_dataset/__init__.py ADDED
File without changes
ffhq_dataset/face_alignment.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import scipy.ndimage
3
+ import os
4
+ import PIL.Image
5
+
6
+
7
+ def image_align(image, face_landmarks, output_size=1024, transform_size=4096, enable_padding=True):
8
+ # Align function from FFHQ dataset pre-processing step
9
+ # https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
10
+
11
+ lm = np.array(face_landmarks)
12
+ lm_chin = lm[0 : 17] # left-right
13
+ lm_eyebrow_left = lm[17 : 22] # left-right
14
+ lm_eyebrow_right = lm[22 : 27] # left-right
15
+ lm_nose = lm[27 : 31] # top-down
16
+ lm_nostrils = lm[31 : 36] # top-down
17
+ lm_eye_left = lm[36 : 42] # left-clockwise
18
+ lm_eye_right = lm[42 : 48] # left-clockwise
19
+ lm_mouth_outer = lm[48 : 60] # left-clockwise
20
+ lm_mouth_inner = lm[60 : 68] # left-clockwise
21
+
22
+ # Calculate auxiliary vectors.
23
+ eye_left = np.mean(lm_eye_left, axis=0)
24
+ eye_right = np.mean(lm_eye_right, axis=0)
25
+ eye_avg = (eye_left + eye_right) * 0.5
26
+ eye_to_eye = eye_right - eye_left
27
+ mouth_left = lm_mouth_outer[0]
28
+ mouth_right = lm_mouth_outer[6]
29
+ mouth_avg = (mouth_left + mouth_right) * 0.5
30
+ eye_to_mouth = mouth_avg - eye_avg
31
+
32
+ # Choose oriented crop rectangle.
33
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
34
+ x /= np.hypot(*x)
35
+ x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
36
+ y = np.flipud(x) * [-1, 1]
37
+ c = eye_avg + eye_to_mouth * 0.1
38
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
39
+ qsize = np.hypot(*x) * 2
40
+
41
+ img = PIL.Image.fromarray(image)
42
+
43
+ # Shrink.
44
+ shrink = int(np.floor(qsize / output_size * 0.5))
45
+ if shrink > 1:
46
+ rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
47
+ img = img.resize(rsize, PIL.Image.ANTIALIAS)
48
+ quad /= shrink
49
+ qsize /= shrink
50
+
51
+ # Crop.
52
+ border = max(int(np.rint(qsize * 0.1)), 3)
53
+ crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
54
+ crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
55
+ if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
56
+ img = img.crop(crop)
57
+ quad -= crop[0:2]
58
+
59
+ # Pad.
60
+ pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
61
+ pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
62
+ if enable_padding and max(pad) > border - 4:
63
+ pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
64
+ img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
65
+ h, w, _ = img.shape
66
+ y, x, _ = np.ogrid[:h, :w, :1]
67
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
68
+ blur = qsize * 0.02
69
+ img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
70
+ img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
71
+ img = np.uint8(np.clip(np.rint(img), 0, 255))
72
+ img = PIL.Image.fromarray(img, 'RGB')
73
+ quad += pad[:2]
74
+
75
+ # Transform.
76
+ img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
77
+ if output_size < transform_size:
78
+ img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
79
+
80
+ img_np = np.array(img)
81
+ return img_np
ffhq_dataset/gen_aligned_image.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from .face_alignment import image_align
4
+ from .landmarks_detector import LandmarksDetector
5
+
6
+
7
+ cur_dir = os.path.split(os.path.realpath(__file__))[0]
8
+ model_path = os.path.join(cur_dir, 'shape_predictor_68_face_landmarks.dat')
9
+
10
+
11
+ class FaceAlign:
12
+ def __init__(self, predictor_model_path=model_path):
13
+ self.landmarks_detector = LandmarksDetector(predictor_model_path)
14
+
15
+ def get_crop_image(self, image):
16
+ lms = []
17
+ for i, face_landmarks in enumerate(self.landmarks_detector.get_landmarks(image), start=1):
18
+ lms.append(face_landmarks)
19
+ if len(lms) < 1:
20
+ return None
21
+ out_image = image_align(image, lms[0])
22
+
23
+ return out_image
24
+
ffhq_dataset/landmarks_detector.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dlib
2
+ import cv2
3
+
4
+
5
+ class LandmarksDetector:
6
+ def __init__(self, predictor_model_path):
7
+ """
8
+ :param predictor_model_path: path to shape_predictor_68_face_landmarks.dat file
9
+ """
10
+ self.detector = dlib.get_frontal_face_detector()
11
+ self.shape_predictor = dlib.shape_predictor(predictor_model_path)
12
+
13
+ def get_landmarks(self, image):
14
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
15
+ dets = self.detector(gray, 1)
16
+
17
+ for detection in dets:
18
+ try:
19
+ face_landmarks = [(item.x, item.y) for item in self.shape_predictor(gray, detection).parts()]
20
+ yield face_landmarks
21
+ except:
22
+ print("Exception in get_landmarks()!")