AK391
commited on
Commit
·
0145b71
1
Parent(s):
99116c0
add files
Browse files- gen_video.py +210 -0
- generate_image_pairs.py +111 -0
- model.py +782 -0
- model_encoder.py +160 -0
- op/__init__.py +2 -0
- op/fused_act.py +104 -0
- op/fused_bias_act.cpp +21 -0
- op/fused_bias_act_kernel.cu +99 -0
- op/upfirdn2d.cpp +23 -0
- op/upfirdn2d.py +207 -0
- op/upfirdn2d_kernel.cu +369 -0
- psp_encoder/__init__.py +0 -0
- psp_encoder/helpers.py +119 -0
- psp_encoder/psp_encoders.py +153 -0
- style_transfer_folder.py +92 -0
- utils.py +15 -0
gen_video.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from model import Generator
|
9 |
+
from psp_encoder.psp_encoders import PSPEncoder
|
10 |
+
from utils import ten2cv, cv2ten
|
11 |
+
|
12 |
+
import glob
|
13 |
+
from tqdm import tqdm
|
14 |
+
import random
|
15 |
+
|
16 |
+
|
17 |
+
seed = 0
|
18 |
+
|
19 |
+
random.seed(seed)
|
20 |
+
np.random.seed(seed)
|
21 |
+
torch.manual_seed(seed)
|
22 |
+
torch.cuda.manual_seed_all(seed)
|
23 |
+
|
24 |
+
|
25 |
+
def sigmoid(x, w=1):
|
26 |
+
return 1. / (1 + np.exp(-w * x))
|
27 |
+
|
28 |
+
|
29 |
+
def get_alphas(start=-5, end=5, step=0.5, len_tail=10):
|
30 |
+
return [0] + [sigmoid(alpha) for alpha in np.arange(start, end, step)] + [1] * len_tail
|
31 |
+
|
32 |
+
|
33 |
+
def slide(entries, margin=32):
|
34 |
+
"""Returns a sliding reference window.
|
35 |
+
Args:
|
36 |
+
entries: a list containing two reference images, x_prev and x_next,
|
37 |
+
both of which has a shape (1, 3, H, W)
|
38 |
+
Returns:
|
39 |
+
canvas: output slide of shape (num_frames, 3, H*2, W+margin)
|
40 |
+
"""
|
41 |
+
_, C, H, W = entries[0].shape
|
42 |
+
alphas = get_alphas()
|
43 |
+
T = len(alphas) # number of frames
|
44 |
+
|
45 |
+
canvas = - torch.ones((T, C, H*2, W + margin))
|
46 |
+
merged = torch.cat(entries, dim=2) # (1, 3, H*2, W)
|
47 |
+
for t, alpha in enumerate(alphas):
|
48 |
+
top = int(H * (1 - alpha)) # top, bottom for canvas
|
49 |
+
bottom = H * 2
|
50 |
+
m_top = 0 # top, bottom for merged
|
51 |
+
m_bottom = 2 * H - top
|
52 |
+
canvas[t, :, top:bottom, :W] = merged[:, :, m_top:m_bottom, :]
|
53 |
+
return canvas
|
54 |
+
|
55 |
+
|
56 |
+
def slide_one_window(entries, margin=32):
|
57 |
+
"""Returns a sliding reference window.
|
58 |
+
Args:
|
59 |
+
entries: a list containing two reference images, x_prev and x_next,
|
60 |
+
both of which has a shape (1, 3, H, W)
|
61 |
+
Returns:
|
62 |
+
canvas: output slide of shape (num_frames, 3, H, W+margin)
|
63 |
+
"""
|
64 |
+
_, C, H, W = entries[0].shape
|
65 |
+
device = entries[0].device
|
66 |
+
alphas = get_alphas()
|
67 |
+
T = len(alphas) # number of frames
|
68 |
+
|
69 |
+
canvas = - torch.ones((T, C, H, W + margin)).to(device)
|
70 |
+
merged = torch.cat(entries, dim=2) # (1, 3, H*2, W)
|
71 |
+
for t, alpha in enumerate(alphas):
|
72 |
+
m_top = int(H * alpha) # top, bottom for merged
|
73 |
+
m_bottom = m_top + H
|
74 |
+
canvas[t, :, :, :W] = merged[:, :, m_top:m_bottom, :]
|
75 |
+
return canvas
|
76 |
+
|
77 |
+
|
78 |
+
def tensor2ndarray255(images):
|
79 |
+
images = torch.clamp(images * 0.5 + 0.5, 0, 1)
|
80 |
+
return (images.cpu().numpy().transpose(0, 2, 3, 1) * 255).astype(np.uint8)
|
81 |
+
|
82 |
+
|
83 |
+
@torch.no_grad()
|
84 |
+
def interpolate(args, g, sample_in, sample_style_prev, sample_style_next):
|
85 |
+
''' returns T x C x H x W '''
|
86 |
+
frames_ten = []
|
87 |
+
alphas = get_alphas()
|
88 |
+
|
89 |
+
for alpha in alphas:
|
90 |
+
sample_style = torch.lerp(sample_style_prev, sample_style_next, alpha)
|
91 |
+
frame_ten, _ = g([sample_in], z_embed=sample_style, add_weight_index=args.add_weight_index,
|
92 |
+
input_is_latent=True, return_latents=False, randomize_noise=False)
|
93 |
+
frames_ten.append(frame_ten)
|
94 |
+
frames_ten = torch.cat(frames_ten)
|
95 |
+
return frames_ten
|
96 |
+
|
97 |
+
|
98 |
+
@torch.no_grad()
|
99 |
+
def video_ref(args, g, psp_encoder, img_in_ten, img_style_tens):
|
100 |
+
video = []
|
101 |
+
sample_in = psp_encoder(img_in_ten)
|
102 |
+
|
103 |
+
img_style_ten_prev, sample_style_prev = None, None
|
104 |
+
|
105 |
+
for idx in tqdm(range(len(img_style_tens))):
|
106 |
+
img_style_ten_next = img_style_tens[idx]
|
107 |
+
sample_style_next = g_ema.get_z_embed(img_style_ten_next)
|
108 |
+
if img_style_ten_prev is None:
|
109 |
+
img_style_ten_prev, sample_style_prev = img_style_ten_next, sample_style_next
|
110 |
+
continue
|
111 |
+
|
112 |
+
interpolated = interpolate(args, g, sample_in, sample_style_prev, sample_style_next)
|
113 |
+
entries = [img_style_ten_prev, img_style_ten_next]
|
114 |
+
slided = slide_one_window(entries, margin=0) # [T, C, H, W)
|
115 |
+
frames = torch.cat([img_in_ten.expand_as(interpolated), slided, interpolated], dim=3).cpu() # [T, C, H, W*3)
|
116 |
+
video.append(frames)
|
117 |
+
img_style_ten_prev, sample_style_prev = img_style_ten_next, sample_style_next
|
118 |
+
|
119 |
+
# append last frame 10 time
|
120 |
+
for _ in range(10):
|
121 |
+
video.append(frames[-1:])
|
122 |
+
video = tensor2ndarray255(torch.cat(video)) # [T, H, W*3, C)
|
123 |
+
|
124 |
+
return video
|
125 |
+
|
126 |
+
|
127 |
+
def save_video(fname, images, output_fps=30):
|
128 |
+
print('save video to: %s' % fname)
|
129 |
+
|
130 |
+
assert isinstance(images, np.ndarray), "images should be np.array: NHWC"
|
131 |
+
num_frames, height, width, channels = images.shape
|
132 |
+
|
133 |
+
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
134 |
+
videoWriter = cv2.VideoWriter(fname, fourcc, output_fps, (width, height))
|
135 |
+
|
136 |
+
for idx in tqdm(range(num_frames)):
|
137 |
+
frame = images[idx][:, :, ::-1] # [H, W*3, C)
|
138 |
+
videoWriter.write(frame)
|
139 |
+
|
140 |
+
videoWriter.release()
|
141 |
+
|
142 |
+
|
143 |
+
if __name__ == '__main__':
|
144 |
+
device = 'cuda'
|
145 |
+
|
146 |
+
parser = argparse.ArgumentParser()
|
147 |
+
|
148 |
+
parser.add_argument('--size', type=int, default=1024)
|
149 |
+
|
150 |
+
parser.add_argument('--ckpt', type=str, default='', help='path to BlendGAN checkpoint')
|
151 |
+
parser.add_argument('--psp_encoder_ckpt', type=str, default='', help='path to psp_encoder checkpoint')
|
152 |
+
|
153 |
+
parser.add_argument('--style_img_path', type=str, default=None, help='path to style image')
|
154 |
+
parser.add_argument('--input_img_path', type=str, default=None, help='path to input image')
|
155 |
+
parser.add_argument('--add_weight_index', type=int, default=7)
|
156 |
+
|
157 |
+
parser.add_argument('--channel_multiplier', type=int, default=2)
|
158 |
+
parser.add_argument('--outdir', type=str, default="")
|
159 |
+
|
160 |
+
args = parser.parse_args()
|
161 |
+
|
162 |
+
outdir = args.outdir
|
163 |
+
if not os.path.exists(outdir):
|
164 |
+
os.makedirs(outdir, exist_ok=True)
|
165 |
+
|
166 |
+
args.latent = 512
|
167 |
+
args.n_mlp = 8
|
168 |
+
|
169 |
+
checkpoint = torch.load(args.ckpt)
|
170 |
+
model_dict = checkpoint['g_ema']
|
171 |
+
print('ckpt: ', args.ckpt)
|
172 |
+
|
173 |
+
g_ema = Generator(
|
174 |
+
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
|
175 |
+
).to(device)
|
176 |
+
g_ema.load_state_dict(model_dict)
|
177 |
+
g_ema.eval()
|
178 |
+
|
179 |
+
psp_encoder = PSPEncoder(args.psp_encoder_ckpt, output_size=args.size).to(device)
|
180 |
+
psp_encoder.eval()
|
181 |
+
|
182 |
+
input_img_paths = sorted(glob.glob(os.path.join(args.input_img_path, '*.*')))
|
183 |
+
style_img_paths = sorted(glob.glob(os.path.join(args.style_img_path, '*.*')))[:]
|
184 |
+
|
185 |
+
for input_img_path in input_img_paths:
|
186 |
+
print('process: %s' % input_img_path)
|
187 |
+
|
188 |
+
name_in = os.path.splitext(os.path.basename(input_img_path))[0]
|
189 |
+
img_in = cv2.imread(input_img_path, 1)
|
190 |
+
img_in = cv2.resize(img_in, (args.size, args.size))
|
191 |
+
img_in_ten = cv2ten(img_in, device)
|
192 |
+
|
193 |
+
img_style_tens = []
|
194 |
+
|
195 |
+
style_img_path_rand = random.choices(style_img_paths, k=8)
|
196 |
+
for style_img_path in style_img_path_rand:
|
197 |
+
name_style = os.path.splitext(os.path.basename(style_img_path))[0]
|
198 |
+
img_style = cv2.imread(style_img_path, 1)
|
199 |
+
img_style = cv2.resize(img_style, (args.size, args.size))
|
200 |
+
img_style_ten = cv2ten(img_style, device)
|
201 |
+
|
202 |
+
img_style_tens.append(img_style_ten)
|
203 |
+
|
204 |
+
fname = f'{args.outdir}/{name_in}.mp4'
|
205 |
+
video = video_ref(args, g_ema, psp_encoder, img_in_ten, img_style_tens)
|
206 |
+
|
207 |
+
save_video(fname, video, output_fps=30)
|
208 |
+
|
209 |
+
print('Done!')
|
210 |
+
|
generate_image_pairs.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from model import Generator
|
10 |
+
from utils import ten2cv, cv2ten
|
11 |
+
import random
|
12 |
+
|
13 |
+
seed = 0
|
14 |
+
|
15 |
+
random.seed(seed)
|
16 |
+
np.random.seed(seed)
|
17 |
+
torch.manual_seed(seed)
|
18 |
+
torch.cuda.manual_seed_all(seed)
|
19 |
+
|
20 |
+
|
21 |
+
def generate(args, g_ema, device, mean_latent, sample_style, add_weight_index):
|
22 |
+
if args.sample_zs is not None:
|
23 |
+
sample_zs = torch.load(args.sample_zs)
|
24 |
+
else:
|
25 |
+
sample_zs = None
|
26 |
+
|
27 |
+
with torch.no_grad():
|
28 |
+
g_ema.eval()
|
29 |
+
for i in tqdm(range(args.pics)):
|
30 |
+
if sample_zs is not None:
|
31 |
+
sample_z = sample_zs[i]
|
32 |
+
else:
|
33 |
+
sample_z = torch.randn(1, args.latent, device=device)
|
34 |
+
|
35 |
+
sample1, _ = g_ema([sample_z],
|
36 |
+
truncation=args.truncation, truncation_latent=mean_latent, return_latents=False, randomize_noise=False)
|
37 |
+
sample2, _ = g_ema([sample_z], z_embed=sample_style, add_weight_index=add_weight_index,
|
38 |
+
truncation=args.truncation, truncation_latent=mean_latent, return_latents=False, randomize_noise=False)
|
39 |
+
|
40 |
+
sample1 = ten2cv(sample1)
|
41 |
+
sample2 = ten2cv(sample2)
|
42 |
+
out = np.concatenate([sample1, sample2], axis=1)
|
43 |
+
|
44 |
+
cv2.imwrite(f'{args.outdir}/{str(i).zfill(6)}.jpg', out)
|
45 |
+
|
46 |
+
|
47 |
+
if __name__ == '__main__':
|
48 |
+
device = 'cuda'
|
49 |
+
|
50 |
+
parser = argparse.ArgumentParser()
|
51 |
+
|
52 |
+
parser.add_argument('--size', type=int, default=1024)
|
53 |
+
parser.add_argument('--pics', type=int, default=20, help='N_PICS')
|
54 |
+
parser.add_argument('--truncation', type=float, default=0.75)
|
55 |
+
parser.add_argument('--truncation_mean', type=int, default=4096)
|
56 |
+
parser.add_argument('--ckpt', type=str, default='', help='path to BlendGAN checkpoint')
|
57 |
+
parser.add_argument('--style_img', type=str, default=None, help='path to style image')
|
58 |
+
parser.add_argument('--sample_zs', type=str, default=None)
|
59 |
+
parser.add_argument('--add_weight_index', type=int, default=6)
|
60 |
+
|
61 |
+
parser.add_argument('--channel_multiplier', type=int, default=2)
|
62 |
+
parser.add_argument('--outdir', type=str, default="")
|
63 |
+
|
64 |
+
args = parser.parse_args()
|
65 |
+
|
66 |
+
outdir = args.outdir
|
67 |
+
if not os.path.exists(outdir):
|
68 |
+
os.makedirs(outdir, exist_ok=True)
|
69 |
+
|
70 |
+
args.latent = 512
|
71 |
+
args.n_mlp = 8
|
72 |
+
|
73 |
+
checkpoint = torch.load(args.ckpt)
|
74 |
+
model_dict = checkpoint['g_ema']
|
75 |
+
if "latent_avg" in checkpoint.keys():
|
76 |
+
latent_avg = checkpoint["latent_avg"]
|
77 |
+
else:
|
78 |
+
latent_avg = None
|
79 |
+
if "truncation" in checkpoint.keys():
|
80 |
+
args.truncation = checkpoint["truncation"]
|
81 |
+
|
82 |
+
print('ckpt: ', args.ckpt)
|
83 |
+
print('truncation: ', args.truncation)
|
84 |
+
|
85 |
+
g_ema = Generator(
|
86 |
+
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
|
87 |
+
).to(device)
|
88 |
+
g_ema.load_state_dict(model_dict)
|
89 |
+
|
90 |
+
if args.truncation < 1:
|
91 |
+
if latent_avg is not None:
|
92 |
+
mean_latent = latent_avg
|
93 |
+
print('### use mean_latent in ckpt["latent_avg"]')
|
94 |
+
else:
|
95 |
+
with torch.no_grad():
|
96 |
+
mean_latent = g_ema.mean_latent(args.truncation_mean)
|
97 |
+
print('### generate mean_latent with \'g_ema.mean_latent\'')
|
98 |
+
else:
|
99 |
+
mean_latent = None
|
100 |
+
print('### args.truncation = 1, mean_latent is None')
|
101 |
+
|
102 |
+
if args.style_img is not None:
|
103 |
+
img = cv2.imread(args.style_img, 1)
|
104 |
+
img = cv2ten(img, device)
|
105 |
+
sample_style = g_ema.get_z_embed(img)
|
106 |
+
else:
|
107 |
+
sample_style = torch.randn(1, args.latent, device=device)
|
108 |
+
|
109 |
+
generate(args, g_ema, device, mean_latent, sample_style, args.add_weight_index)
|
110 |
+
|
111 |
+
print('Done!')
|
model.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
|
9 |
+
from model_encoder import StyleEncoder
|
10 |
+
|
11 |
+
|
12 |
+
class PixelNorm(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
def forward(self, input):
|
17 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
18 |
+
|
19 |
+
|
20 |
+
def make_kernel(k):
|
21 |
+
k = torch.tensor(k, dtype=torch.float32)
|
22 |
+
|
23 |
+
if k.ndim == 1:
|
24 |
+
k = k[None, :] * k[:, None]
|
25 |
+
|
26 |
+
k /= k.sum()
|
27 |
+
|
28 |
+
return k
|
29 |
+
|
30 |
+
|
31 |
+
class Upsample(nn.Module):
|
32 |
+
def __init__(self, kernel, factor=2):
|
33 |
+
super().__init__()
|
34 |
+
|
35 |
+
self.factor = factor
|
36 |
+
kernel = make_kernel(kernel) * (factor ** 2)
|
37 |
+
self.register_buffer('kernel', kernel)
|
38 |
+
|
39 |
+
p = kernel.shape[0] - factor
|
40 |
+
|
41 |
+
pad0 = (p + 1) // 2 + factor - 1
|
42 |
+
pad1 = p // 2
|
43 |
+
|
44 |
+
self.pad = (pad0, pad1)
|
45 |
+
|
46 |
+
def forward(self, input):
|
47 |
+
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
|
48 |
+
|
49 |
+
return out
|
50 |
+
|
51 |
+
|
52 |
+
class Downsample(nn.Module):
|
53 |
+
def __init__(self, kernel, factor=2):
|
54 |
+
super().__init__()
|
55 |
+
|
56 |
+
self.factor = factor
|
57 |
+
kernel = make_kernel(kernel)
|
58 |
+
self.register_buffer('kernel', kernel)
|
59 |
+
|
60 |
+
p = kernel.shape[0] - factor
|
61 |
+
|
62 |
+
pad0 = (p + 1) // 2
|
63 |
+
pad1 = p // 2
|
64 |
+
|
65 |
+
self.pad = (pad0, pad1)
|
66 |
+
|
67 |
+
def forward(self, input):
|
68 |
+
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
|
69 |
+
|
70 |
+
return out
|
71 |
+
|
72 |
+
|
73 |
+
class Blur(nn.Module):
|
74 |
+
def __init__(self, kernel, pad, upsample_factor=1):
|
75 |
+
super().__init__()
|
76 |
+
|
77 |
+
kernel = make_kernel(kernel)
|
78 |
+
|
79 |
+
if upsample_factor > 1:
|
80 |
+
kernel = kernel * (upsample_factor ** 2)
|
81 |
+
|
82 |
+
self.register_buffer('kernel', kernel)
|
83 |
+
|
84 |
+
self.pad = pad
|
85 |
+
|
86 |
+
def forward(self, input):
|
87 |
+
out = upfirdn2d(input, self.kernel, pad=self.pad)
|
88 |
+
|
89 |
+
return out
|
90 |
+
|
91 |
+
|
92 |
+
class EqualConv2d(nn.Module):
|
93 |
+
def __init__(
|
94 |
+
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
|
95 |
+
):
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
self.weight = nn.Parameter(
|
99 |
+
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
|
100 |
+
)
|
101 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
102 |
+
|
103 |
+
self.stride = stride
|
104 |
+
self.padding = padding
|
105 |
+
|
106 |
+
if bias:
|
107 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
108 |
+
|
109 |
+
else:
|
110 |
+
self.bias = None
|
111 |
+
|
112 |
+
def forward(self, input):
|
113 |
+
out = F.conv2d(
|
114 |
+
input,
|
115 |
+
self.weight * self.scale,
|
116 |
+
bias=self.bias,
|
117 |
+
stride=self.stride,
|
118 |
+
padding=self.padding,
|
119 |
+
)
|
120 |
+
|
121 |
+
return out
|
122 |
+
|
123 |
+
def __repr__(self):
|
124 |
+
return (
|
125 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
126 |
+
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
class EqualLinear(nn.Module):
|
131 |
+
def __init__(
|
132 |
+
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
|
133 |
+
):
|
134 |
+
super().__init__()
|
135 |
+
|
136 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
137 |
+
|
138 |
+
if bias:
|
139 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
140 |
+
|
141 |
+
else:
|
142 |
+
self.bias = None
|
143 |
+
|
144 |
+
self.activation = activation
|
145 |
+
|
146 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
147 |
+
self.lr_mul = lr_mul
|
148 |
+
|
149 |
+
def forward(self, input):
|
150 |
+
if self.activation:
|
151 |
+
out = F.linear(input, self.weight * self.scale)
|
152 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
153 |
+
|
154 |
+
else:
|
155 |
+
out = F.linear(
|
156 |
+
input, self.weight * self.scale, bias=self.bias * self.lr_mul
|
157 |
+
)
|
158 |
+
|
159 |
+
return out
|
160 |
+
|
161 |
+
def __repr__(self):
|
162 |
+
return (
|
163 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
|
164 |
+
)
|
165 |
+
|
166 |
+
|
167 |
+
class ScaledLeakyReLU(nn.Module):
|
168 |
+
def __init__(self, negative_slope=0.2):
|
169 |
+
super().__init__()
|
170 |
+
|
171 |
+
self.negative_slope = negative_slope
|
172 |
+
|
173 |
+
def forward(self, input):
|
174 |
+
out = F.leaky_relu(input, negative_slope=self.negative_slope)
|
175 |
+
|
176 |
+
return out * math.sqrt(2)
|
177 |
+
|
178 |
+
|
179 |
+
class ModulatedConv2d(nn.Module):
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
in_channel,
|
183 |
+
out_channel,
|
184 |
+
kernel_size,
|
185 |
+
style_dim,
|
186 |
+
demodulate=True,
|
187 |
+
upsample=False,
|
188 |
+
downsample=False,
|
189 |
+
blur_kernel=[1, 3, 3, 1],
|
190 |
+
):
|
191 |
+
super().__init__()
|
192 |
+
|
193 |
+
self.eps = 1e-8
|
194 |
+
self.kernel_size = kernel_size
|
195 |
+
self.in_channel = in_channel
|
196 |
+
self.out_channel = out_channel
|
197 |
+
self.upsample = upsample
|
198 |
+
self.downsample = downsample
|
199 |
+
|
200 |
+
if upsample:
|
201 |
+
factor = 2
|
202 |
+
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
203 |
+
pad0 = (p + 1) // 2 + factor - 1
|
204 |
+
pad1 = p // 2 + 1
|
205 |
+
|
206 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
|
207 |
+
|
208 |
+
if downsample:
|
209 |
+
factor = 2
|
210 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
211 |
+
pad0 = (p + 1) // 2
|
212 |
+
pad1 = p // 2
|
213 |
+
|
214 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
|
215 |
+
|
216 |
+
fan_in = in_channel * kernel_size ** 2
|
217 |
+
self.scale = 1 / math.sqrt(fan_in)
|
218 |
+
self.padding = kernel_size // 2
|
219 |
+
|
220 |
+
self.weight = nn.Parameter(
|
221 |
+
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
|
222 |
+
)
|
223 |
+
|
224 |
+
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
225 |
+
|
226 |
+
self.demodulate = demodulate
|
227 |
+
|
228 |
+
def __repr__(self):
|
229 |
+
return (
|
230 |
+
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
|
231 |
+
f'upsample={self.upsample}, downsample={self.downsample})'
|
232 |
+
)
|
233 |
+
|
234 |
+
def forward(self, input, style):
|
235 |
+
batch, in_channel, height, width = input.shape
|
236 |
+
|
237 |
+
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
|
238 |
+
weight = self.scale * self.weight * style
|
239 |
+
|
240 |
+
if self.demodulate:
|
241 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
242 |
+
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
243 |
+
|
244 |
+
weight = weight.view(
|
245 |
+
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
246 |
+
)
|
247 |
+
|
248 |
+
if self.upsample:
|
249 |
+
input = input.view(1, batch * in_channel, height, width)
|
250 |
+
weight = weight.view(
|
251 |
+
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
252 |
+
)
|
253 |
+
weight = weight.transpose(1, 2).reshape(
|
254 |
+
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
|
255 |
+
)
|
256 |
+
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
|
257 |
+
_, _, height, width = out.shape
|
258 |
+
out = out.view(batch, self.out_channel, height, width)
|
259 |
+
out = self.blur(out)
|
260 |
+
|
261 |
+
elif self.downsample:
|
262 |
+
input = self.blur(input)
|
263 |
+
_, _, height, width = input.shape
|
264 |
+
input = input.view(1, batch * in_channel, height, width)
|
265 |
+
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
|
266 |
+
_, _, height, width = out.shape
|
267 |
+
out = out.view(batch, self.out_channel, height, width)
|
268 |
+
|
269 |
+
else:
|
270 |
+
input = input.view(1, batch * in_channel, height, width)
|
271 |
+
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
|
272 |
+
_, _, height, width = out.shape
|
273 |
+
out = out.view(batch, self.out_channel, height, width)
|
274 |
+
|
275 |
+
return out
|
276 |
+
|
277 |
+
|
278 |
+
class NoiseInjection(nn.Module):
|
279 |
+
def __init__(self):
|
280 |
+
super().__init__()
|
281 |
+
|
282 |
+
self.weight = nn.Parameter(torch.zeros(1))
|
283 |
+
|
284 |
+
def forward(self, image, noise=None):
|
285 |
+
if noise is None:
|
286 |
+
batch, _, height, width = image.shape
|
287 |
+
noise = image.new_empty(batch, 1, height, width).normal_()
|
288 |
+
|
289 |
+
return image + self.weight * noise
|
290 |
+
|
291 |
+
|
292 |
+
class ConstantInput(nn.Module):
|
293 |
+
def __init__(self, channel, size=4):
|
294 |
+
super().__init__()
|
295 |
+
|
296 |
+
self.input = nn.Parameter(torch.randn(1, channel, size, size))
|
297 |
+
|
298 |
+
def forward(self, input):
|
299 |
+
batch = input.shape[0]
|
300 |
+
out = self.input.repeat(batch, 1, 1, 1)
|
301 |
+
|
302 |
+
return out
|
303 |
+
|
304 |
+
|
305 |
+
class StyledConv(nn.Module):
|
306 |
+
def __init__(
|
307 |
+
self,
|
308 |
+
in_channel,
|
309 |
+
out_channel,
|
310 |
+
kernel_size,
|
311 |
+
style_dim,
|
312 |
+
upsample=False,
|
313 |
+
blur_kernel=[1, 3, 3, 1],
|
314 |
+
demodulate=True,
|
315 |
+
):
|
316 |
+
super().__init__()
|
317 |
+
|
318 |
+
self.conv = ModulatedConv2d(
|
319 |
+
in_channel,
|
320 |
+
out_channel,
|
321 |
+
kernel_size,
|
322 |
+
style_dim,
|
323 |
+
upsample=upsample,
|
324 |
+
blur_kernel=blur_kernel,
|
325 |
+
demodulate=demodulate,
|
326 |
+
)
|
327 |
+
|
328 |
+
self.noise = NoiseInjection()
|
329 |
+
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
330 |
+
# self.activate = ScaledLeakyReLU(0.2)
|
331 |
+
self.activate = FusedLeakyReLU(out_channel)
|
332 |
+
|
333 |
+
def forward(self, input, style, noise=None):
|
334 |
+
out = self.conv(input, style)
|
335 |
+
out = self.noise(out, noise=noise)
|
336 |
+
# out = out + self.bias
|
337 |
+
out = self.activate(out)
|
338 |
+
|
339 |
+
return out
|
340 |
+
|
341 |
+
|
342 |
+
class ToRGB(nn.Module):
|
343 |
+
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
|
344 |
+
super().__init__()
|
345 |
+
|
346 |
+
if upsample:
|
347 |
+
self.upsample = Upsample(blur_kernel)
|
348 |
+
|
349 |
+
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
|
350 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
351 |
+
|
352 |
+
def forward(self, input, style, skip=None):
|
353 |
+
out = self.conv(input, style)
|
354 |
+
out = out + self.bias
|
355 |
+
|
356 |
+
if skip is not None:
|
357 |
+
skip = self.upsample(skip)
|
358 |
+
|
359 |
+
out = out + skip
|
360 |
+
|
361 |
+
return out
|
362 |
+
|
363 |
+
|
364 |
+
class Generator(nn.Module):
|
365 |
+
def __init__(
|
366 |
+
self,
|
367 |
+
size,
|
368 |
+
style_dim,
|
369 |
+
n_mlp,
|
370 |
+
channel_multiplier=2,
|
371 |
+
blur_kernel=[1, 3, 3, 1],
|
372 |
+
lr_mlp=0.01,
|
373 |
+
):
|
374 |
+
super().__init__()
|
375 |
+
|
376 |
+
self.size = size
|
377 |
+
|
378 |
+
self.style_dim = style_dim
|
379 |
+
|
380 |
+
self.embedder = StyleEncoder(style_dim=512, n_mlp=4)
|
381 |
+
|
382 |
+
layers = [PixelNorm()]
|
383 |
+
|
384 |
+
for i in range(n_mlp):
|
385 |
+
layers.append(
|
386 |
+
EqualLinear(
|
387 |
+
style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'
|
388 |
+
)
|
389 |
+
)
|
390 |
+
self.embedding = nn.Sequential(*layers)
|
391 |
+
|
392 |
+
layers = [PixelNorm()]
|
393 |
+
|
394 |
+
for i in range(n_mlp):
|
395 |
+
layers.append(
|
396 |
+
EqualLinear(
|
397 |
+
style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'
|
398 |
+
)
|
399 |
+
)
|
400 |
+
|
401 |
+
self.style = nn.Sequential(*layers)
|
402 |
+
|
403 |
+
self.channels = {
|
404 |
+
4: 512,
|
405 |
+
8: 512,
|
406 |
+
16: 512,
|
407 |
+
32: 512,
|
408 |
+
64: 256 * channel_multiplier,
|
409 |
+
128: 128 * channel_multiplier,
|
410 |
+
256: 64 * channel_multiplier,
|
411 |
+
512: 32 * channel_multiplier,
|
412 |
+
1024: 16 * channel_multiplier,
|
413 |
+
}
|
414 |
+
|
415 |
+
self.input = ConstantInput(self.channels[4])
|
416 |
+
self.conv1 = StyledConv(
|
417 |
+
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
|
418 |
+
)
|
419 |
+
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
|
420 |
+
|
421 |
+
self.log_size = int(math.log(size, 2))
|
422 |
+
self.num_layers = (self.log_size - 2) * 2 + 1
|
423 |
+
|
424 |
+
self.convs = nn.ModuleList()
|
425 |
+
self.upsamples = nn.ModuleList()
|
426 |
+
self.to_rgbs = nn.ModuleList()
|
427 |
+
self.noises = nn.Module()
|
428 |
+
|
429 |
+
in_channel = self.channels[4]
|
430 |
+
|
431 |
+
for layer_idx in range(self.num_layers):
|
432 |
+
res = (layer_idx + 5) // 2
|
433 |
+
shape = [1, 1, 2 ** res, 2 ** res]
|
434 |
+
self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape))
|
435 |
+
|
436 |
+
for i in range(3, self.log_size + 1):
|
437 |
+
out_channel = self.channels[2 ** i]
|
438 |
+
|
439 |
+
self.convs.append(
|
440 |
+
StyledConv(
|
441 |
+
in_channel,
|
442 |
+
out_channel,
|
443 |
+
3,
|
444 |
+
style_dim,
|
445 |
+
upsample=True,
|
446 |
+
blur_kernel=blur_kernel,
|
447 |
+
)
|
448 |
+
)
|
449 |
+
|
450 |
+
self.convs.append(
|
451 |
+
StyledConv(
|
452 |
+
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
|
453 |
+
)
|
454 |
+
)
|
455 |
+
|
456 |
+
self.to_rgbs.append(ToRGB(out_channel, style_dim))
|
457 |
+
|
458 |
+
in_channel = out_channel
|
459 |
+
|
460 |
+
self.n_latent = self.log_size * 2 - 2
|
461 |
+
|
462 |
+
self.add_weight = nn.Parameter(torch.ones(1, self.n_latent, 1))
|
463 |
+
|
464 |
+
def make_noise(self):
|
465 |
+
device = self.input.input.device
|
466 |
+
|
467 |
+
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
468 |
+
|
469 |
+
for i in range(3, self.log_size + 1):
|
470 |
+
for _ in range(2):
|
471 |
+
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
472 |
+
|
473 |
+
return noises
|
474 |
+
|
475 |
+
def mean_latent(self, n_latent):
|
476 |
+
latent_in = torch.randn(
|
477 |
+
n_latent, self.style_dim, device=self.input.input.device
|
478 |
+
)
|
479 |
+
latent = self.style(latent_in).mean(0, keepdim=True)
|
480 |
+
|
481 |
+
return latent
|
482 |
+
|
483 |
+
def get_latent(self, input):
|
484 |
+
return self.style(input)
|
485 |
+
|
486 |
+
def get_z_embed(self, image):
|
487 |
+
self.embedder.eval()
|
488 |
+
with torch.no_grad():
|
489 |
+
z_embed = self.embedder(image) # [N, 512]
|
490 |
+
return z_embed
|
491 |
+
|
492 |
+
def forward(
|
493 |
+
self,
|
494 |
+
styles=None,
|
495 |
+
return_latents=False,
|
496 |
+
inject_index=None,
|
497 |
+
truncation=1,
|
498 |
+
truncation_latent=None,
|
499 |
+
input_is_latent=False,
|
500 |
+
noise=None,
|
501 |
+
randomize_noise=True,
|
502 |
+
style_image=None,
|
503 |
+
z_embed=None,
|
504 |
+
only_return_z_embed=False,
|
505 |
+
add_weight_index=None,
|
506 |
+
):
|
507 |
+
if only_return_z_embed and style_image is not None:
|
508 |
+
return self.get_z_embed(style_image)
|
509 |
+
|
510 |
+
if not input_is_latent:
|
511 |
+
styles = [self.style(s) for s in styles]
|
512 |
+
|
513 |
+
if noise is None:
|
514 |
+
if randomize_noise:
|
515 |
+
noise = [None] * self.num_layers
|
516 |
+
else:
|
517 |
+
noise = [
|
518 |
+
getattr(self.noises, f'noise_{i}') for i in range(self.num_layers)
|
519 |
+
]
|
520 |
+
|
521 |
+
if truncation < 1:
|
522 |
+
style_t = []
|
523 |
+
|
524 |
+
for style in styles:
|
525 |
+
style_t.append(
|
526 |
+
truncation_latent + truncation * (style - truncation_latent)
|
527 |
+
)
|
528 |
+
|
529 |
+
styles = style_t
|
530 |
+
|
531 |
+
if len(styles) < 2:
|
532 |
+
inject_index = self.n_latent
|
533 |
+
|
534 |
+
if styles[0].ndim < 3:
|
535 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
536 |
+
|
537 |
+
else:
|
538 |
+
latent = styles[0]
|
539 |
+
|
540 |
+
else:
|
541 |
+
if inject_index is None:
|
542 |
+
inject_index = random.randint(1, self.n_latent - 1)
|
543 |
+
|
544 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
545 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
546 |
+
|
547 |
+
latent = torch.cat([latent, latent2], 1) # [N, 18, 512]
|
548 |
+
|
549 |
+
if z_embed is not None:
|
550 |
+
latent_style = self.embedding(z_embed)
|
551 |
+
latent_style = latent_style.unsqueeze(1).repeat(1, self.n_latent, 1) # [N, 18, 512]
|
552 |
+
elif style_image is not None:
|
553 |
+
z_embed = self.get_z_embed(style_image) # [N, 512]
|
554 |
+
latent_style = self.embedding(z_embed)
|
555 |
+
latent_style = latent_style.unsqueeze(1).repeat(1, self.n_latent, 1) # [N, 18, 512]
|
556 |
+
else:
|
557 |
+
latent_style = None
|
558 |
+
|
559 |
+
if latent_style is not None:
|
560 |
+
self.add_weight.data = self.add_weight.data.clamp(0.0, 1.0)
|
561 |
+
if add_weight_index is not None:
|
562 |
+
add_weight_new = self.add_weight.clone()
|
563 |
+
add_weight_new[:, :add_weight_index, :] = 1.0
|
564 |
+
latent = latent * add_weight_new + latent_style * (1 - add_weight_new)
|
565 |
+
else:
|
566 |
+
latent = latent * self.add_weight + latent_style * (1 - self.add_weight)
|
567 |
+
|
568 |
+
out = self.input(latent)
|
569 |
+
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
570 |
+
|
571 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
572 |
+
|
573 |
+
i = 1
|
574 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
575 |
+
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
576 |
+
):
|
577 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
578 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
579 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
580 |
+
|
581 |
+
i += 2
|
582 |
+
|
583 |
+
image = skip
|
584 |
+
|
585 |
+
if return_latents:
|
586 |
+
if style_image is not None or z_embed is not None:
|
587 |
+
return image, latent, z_embed
|
588 |
+
else:
|
589 |
+
return image, latent
|
590 |
+
|
591 |
+
else:
|
592 |
+
return image, None
|
593 |
+
|
594 |
+
|
595 |
+
class ConvLayer(nn.Sequential):
|
596 |
+
def __init__(
|
597 |
+
self,
|
598 |
+
in_channel,
|
599 |
+
out_channel,
|
600 |
+
kernel_size,
|
601 |
+
downsample=False,
|
602 |
+
blur_kernel=[1, 3, 3, 1],
|
603 |
+
bias=True,
|
604 |
+
activate=True,
|
605 |
+
):
|
606 |
+
layers = []
|
607 |
+
|
608 |
+
if downsample:
|
609 |
+
factor = 2
|
610 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
611 |
+
pad0 = (p + 1) // 2
|
612 |
+
pad1 = p // 2
|
613 |
+
|
614 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
615 |
+
|
616 |
+
stride = 2
|
617 |
+
self.padding = 0
|
618 |
+
|
619 |
+
else:
|
620 |
+
stride = 1
|
621 |
+
self.padding = kernel_size // 2
|
622 |
+
|
623 |
+
layers.append(
|
624 |
+
EqualConv2d(
|
625 |
+
in_channel,
|
626 |
+
out_channel,
|
627 |
+
kernel_size,
|
628 |
+
padding=self.padding,
|
629 |
+
stride=stride,
|
630 |
+
bias=bias and not activate,
|
631 |
+
)
|
632 |
+
)
|
633 |
+
|
634 |
+
if activate:
|
635 |
+
if bias:
|
636 |
+
layers.append(FusedLeakyReLU(out_channel))
|
637 |
+
|
638 |
+
else:
|
639 |
+
layers.append(ScaledLeakyReLU(0.2))
|
640 |
+
|
641 |
+
super().__init__(*layers)
|
642 |
+
|
643 |
+
|
644 |
+
class ResBlock(nn.Module):
|
645 |
+
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
|
646 |
+
super().__init__()
|
647 |
+
|
648 |
+
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
649 |
+
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
|
650 |
+
|
651 |
+
self.skip = ConvLayer(
|
652 |
+
in_channel, out_channel, 1, downsample=True, activate=False, bias=False
|
653 |
+
)
|
654 |
+
|
655 |
+
def forward(self, input):
|
656 |
+
out = self.conv1(input)
|
657 |
+
out = self.conv2(out)
|
658 |
+
|
659 |
+
skip = self.skip(input)
|
660 |
+
out = (out + skip) / math.sqrt(2)
|
661 |
+
|
662 |
+
return out
|
663 |
+
|
664 |
+
|
665 |
+
class Discriminator(nn.Module):
|
666 |
+
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
667 |
+
super().__init__()
|
668 |
+
|
669 |
+
channels = {
|
670 |
+
4: 512,
|
671 |
+
8: 512,
|
672 |
+
16: 512,
|
673 |
+
32: 512,
|
674 |
+
64: 256 * channel_multiplier,
|
675 |
+
128: 128 * channel_multiplier,
|
676 |
+
256: 64 * channel_multiplier,
|
677 |
+
512: 32 * channel_multiplier,
|
678 |
+
1024: 16 * channel_multiplier,
|
679 |
+
}
|
680 |
+
|
681 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
682 |
+
|
683 |
+
log_size = int(math.log(size, 2))
|
684 |
+
|
685 |
+
in_channel = channels[size]
|
686 |
+
|
687 |
+
for i in range(log_size, 2, -1):
|
688 |
+
out_channel = channels[2 ** (i - 1)]
|
689 |
+
|
690 |
+
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
|
691 |
+
|
692 |
+
in_channel = out_channel
|
693 |
+
|
694 |
+
self.convs = nn.Sequential(*convs)
|
695 |
+
|
696 |
+
self.stddev_group = 4
|
697 |
+
self.stddev_feat = 1
|
698 |
+
|
699 |
+
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
700 |
+
self.final_linear = nn.Sequential(
|
701 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
|
702 |
+
EqualLinear(channels[4], 1),
|
703 |
+
)
|
704 |
+
|
705 |
+
def forward(self, input):
|
706 |
+
out = self.convs(input)
|
707 |
+
|
708 |
+
batch, channel, height, width = out.shape
|
709 |
+
group = min(batch, self.stddev_group)
|
710 |
+
stddev = out.view(
|
711 |
+
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
712 |
+
)
|
713 |
+
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
714 |
+
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
715 |
+
stddev = stddev.repeat(group, 1, height, width)
|
716 |
+
out = torch.cat([out, stddev], 1)
|
717 |
+
|
718 |
+
out = self.final_conv(out)
|
719 |
+
|
720 |
+
out = out.view(batch, -1)
|
721 |
+
out = self.final_linear(out)
|
722 |
+
|
723 |
+
return out
|
724 |
+
|
725 |
+
|
726 |
+
class ProjectionDiscriminator(nn.Module):
|
727 |
+
def __init__(self, size, style_dim=512, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
728 |
+
super().__init__()
|
729 |
+
|
730 |
+
channels = {
|
731 |
+
4: 512,
|
732 |
+
8: 512,
|
733 |
+
16: 512,
|
734 |
+
32: 512,
|
735 |
+
64: 256 * channel_multiplier,
|
736 |
+
128: 128 * channel_multiplier,
|
737 |
+
256: 64 * channel_multiplier,
|
738 |
+
512: 32 * channel_multiplier,
|
739 |
+
1024: 16 * channel_multiplier,
|
740 |
+
}
|
741 |
+
|
742 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
743 |
+
|
744 |
+
log_size = int(math.log(size, 2))
|
745 |
+
|
746 |
+
in_channel = channels[size]
|
747 |
+
|
748 |
+
for i in range(log_size, 2, -1):
|
749 |
+
out_channel = channels[2 ** (i - 1)]
|
750 |
+
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
|
751 |
+
in_channel = out_channel
|
752 |
+
|
753 |
+
self.convs = nn.Sequential(*convs)
|
754 |
+
|
755 |
+
self.stddev_group = 4
|
756 |
+
self.stddev_feat = 1
|
757 |
+
|
758 |
+
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
759 |
+
|
760 |
+
self.l_out = EqualLinear(in_channel, 1)
|
761 |
+
self.l_style = EqualLinear(style_dim, in_channel)
|
762 |
+
|
763 |
+
def forward(self, input, style):
|
764 |
+
out = self.convs(input)
|
765 |
+
|
766 |
+
batch, channel, height, width = out.shape
|
767 |
+
group = min(batch, self.stddev_group)
|
768 |
+
stddev = out.view(
|
769 |
+
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
770 |
+
)
|
771 |
+
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
772 |
+
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
773 |
+
stddev = stddev.repeat(group, 1, height, width)
|
774 |
+
out = torch.cat([out, stddev], 1)
|
775 |
+
|
776 |
+
out = self.final_conv(out)
|
777 |
+
|
778 |
+
h = torch.sum(out, dim=(2, 3))
|
779 |
+
output = self.l_out(h)
|
780 |
+
output += torch.sum(self.l_style(style) * h, dim=1, keepdim=True)
|
781 |
+
|
782 |
+
return output
|
model_encoder.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
from collections import namedtuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
import torchvision.models.vgg as vgg
|
10 |
+
|
11 |
+
from op import fused_leaky_relu
|
12 |
+
|
13 |
+
|
14 |
+
FeatureOutput = namedtuple(
|
15 |
+
"FeatureOutput", ["relu1", "relu2", "relu3", "relu4", "relu5"])
|
16 |
+
|
17 |
+
|
18 |
+
def gram_matrix(y):
|
19 |
+
(b, ch, h, w) = y.size()
|
20 |
+
features = y.view(b, ch, w * h)
|
21 |
+
features_t = features.transpose(1, 2)
|
22 |
+
gram = features.bmm(features_t) / (ch * h * w)
|
23 |
+
return gram
|
24 |
+
|
25 |
+
|
26 |
+
class FeatureExtractor(nn.Module):
|
27 |
+
"""Reference:
|
28 |
+
https://discuss.pytorch.org/t/how-to-extract-features-of-an-image-from-a-trained-model/119/3
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self):
|
32 |
+
super(FeatureExtractor, self).__init__()
|
33 |
+
self.vgg_layers = vgg.vgg19(pretrained=True).features
|
34 |
+
self.layer_name_mapping = {
|
35 |
+
'3': "relu1",
|
36 |
+
'8': "relu2",
|
37 |
+
'17': "relu3",
|
38 |
+
'26': "relu4",
|
39 |
+
'35': "relu5",
|
40 |
+
}
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
output = {}
|
44 |
+
for name, module in self.vgg_layers._modules.items():
|
45 |
+
x = module(x)
|
46 |
+
if name in self.layer_name_mapping:
|
47 |
+
output[self.layer_name_mapping[name]] = x
|
48 |
+
return FeatureOutput(**output)
|
49 |
+
|
50 |
+
|
51 |
+
class StyleEmbedder(nn.Module):
|
52 |
+
def __init__(self):
|
53 |
+
super(StyleEmbedder, self).__init__()
|
54 |
+
self.feature_extractor = FeatureExtractor()
|
55 |
+
self.feature_extractor.eval()
|
56 |
+
self.avg_pool = torch.nn.AdaptiveAvgPool2d((256, 256))
|
57 |
+
|
58 |
+
def forward(self, img):
|
59 |
+
N = img.shape[0]
|
60 |
+
features = self.feature_extractor(self.avg_pool(img))
|
61 |
+
|
62 |
+
grams = []
|
63 |
+
for feature in features:
|
64 |
+
gram = gram_matrix(feature)
|
65 |
+
grams.append(gram.view(N, -1))
|
66 |
+
out = torch.cat(grams, dim=1)
|
67 |
+
return out
|
68 |
+
|
69 |
+
|
70 |
+
class PixelNorm(nn.Module):
|
71 |
+
def __init__(self):
|
72 |
+
super().__init__()
|
73 |
+
|
74 |
+
def forward(self, input):
|
75 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
76 |
+
|
77 |
+
|
78 |
+
class EqualLinear(nn.Module):
|
79 |
+
def __init__(
|
80 |
+
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
|
84 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
85 |
+
|
86 |
+
if bias:
|
87 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
88 |
+
|
89 |
+
else:
|
90 |
+
self.bias = None
|
91 |
+
|
92 |
+
self.activation = activation
|
93 |
+
|
94 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
95 |
+
self.lr_mul = lr_mul
|
96 |
+
|
97 |
+
def forward(self, input):
|
98 |
+
if self.activation:
|
99 |
+
out = F.linear(input, self.weight * self.scale)
|
100 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
101 |
+
|
102 |
+
else:
|
103 |
+
out = F.linear(
|
104 |
+
input, self.weight * self.scale, bias=self.bias * self.lr_mul
|
105 |
+
)
|
106 |
+
|
107 |
+
return out
|
108 |
+
|
109 |
+
def __repr__(self):
|
110 |
+
return (
|
111 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
class StyleEncoder(nn.Module):
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
style_dim=512,
|
119 |
+
n_mlp=4,
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
self.style_dim = style_dim
|
124 |
+
|
125 |
+
e_dim = 610304
|
126 |
+
self.embedder = StyleEmbedder()
|
127 |
+
|
128 |
+
layers = []
|
129 |
+
|
130 |
+
layers.append(EqualLinear(e_dim, style_dim, lr_mul=1, activation='fused_lrelu'))
|
131 |
+
for i in range(n_mlp - 2):
|
132 |
+
layers.append(
|
133 |
+
EqualLinear(
|
134 |
+
style_dim, style_dim, lr_mul=1, activation='fused_lrelu'
|
135 |
+
)
|
136 |
+
)
|
137 |
+
layers.append(EqualLinear(style_dim, style_dim, lr_mul=1, activation=None))
|
138 |
+
self.embedder_mlp = nn.Sequential(*layers)
|
139 |
+
|
140 |
+
def forward(self, image):
|
141 |
+
z_embed = self.embedder_mlp(self.embedder(image)) # [N, 512]
|
142 |
+
return z_embed
|
143 |
+
|
144 |
+
|
145 |
+
class Projector(nn.Module):
|
146 |
+
def __init__(self, style_dim=512, n_mlp=4):
|
147 |
+
super().__init__()
|
148 |
+
|
149 |
+
layers = []
|
150 |
+
for i in range(n_mlp - 1):
|
151 |
+
layers.append(
|
152 |
+
EqualLinear(
|
153 |
+
style_dim, style_dim, lr_mul=1, activation='fused_lrelu'
|
154 |
+
)
|
155 |
+
)
|
156 |
+
layers.append(EqualLinear(style_dim, style_dim, lr_mul=1, activation=None))
|
157 |
+
self.projector = nn.Sequential(*layers)
|
158 |
+
|
159 |
+
def forward(self, x):
|
160 |
+
return self.projector(x)
|
op/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .fused_act import FusedLeakyReLU, fused_leaky_relu
|
2 |
+
from .upfirdn2d import upfirdn2d
|
op/fused_act.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.autograd import Function
|
7 |
+
from torch.utils.cpp_extension import load
|
8 |
+
|
9 |
+
|
10 |
+
module_path = os.path.dirname(__file__)
|
11 |
+
|
12 |
+
cuda_available = torch.cuda.is_available()
|
13 |
+
|
14 |
+
if cuda_available:
|
15 |
+
fused = load(
|
16 |
+
"fused",
|
17 |
+
sources=[
|
18 |
+
os.path.join(module_path, "fused_bias_act.cpp"),
|
19 |
+
os.path.join(module_path, "fused_bias_act_kernel.cu"),
|
20 |
+
],
|
21 |
+
)
|
22 |
+
else:
|
23 |
+
fused = None
|
24 |
+
print("fused_act.py is running on cpu")
|
25 |
+
|
26 |
+
|
27 |
+
class FusedLeakyReLUFunctionBackward(Function):
|
28 |
+
@staticmethod
|
29 |
+
def forward(ctx, grad_output, out, negative_slope, scale):
|
30 |
+
ctx.save_for_backward(out)
|
31 |
+
ctx.negative_slope = negative_slope
|
32 |
+
ctx.scale = scale
|
33 |
+
|
34 |
+
empty = grad_output.new_empty(0)
|
35 |
+
|
36 |
+
grad_input = fused.fused_bias_act(
|
37 |
+
grad_output, empty, out, 3, 1, negative_slope, scale
|
38 |
+
)
|
39 |
+
|
40 |
+
dim = [0]
|
41 |
+
|
42 |
+
if grad_input.ndim > 2:
|
43 |
+
dim += list(range(2, grad_input.ndim))
|
44 |
+
|
45 |
+
grad_bias = grad_input.sum(dim).detach()
|
46 |
+
|
47 |
+
return grad_input, grad_bias
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def backward(ctx, gradgrad_input, gradgrad_bias):
|
51 |
+
out, = ctx.saved_tensors
|
52 |
+
gradgrad_out = fused.fused_bias_act(
|
53 |
+
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
|
54 |
+
)
|
55 |
+
|
56 |
+
return gradgrad_out, None, None, None
|
57 |
+
|
58 |
+
|
59 |
+
class FusedLeakyReLUFunction(Function):
|
60 |
+
@staticmethod
|
61 |
+
def forward(ctx, input, bias, negative_slope, scale):
|
62 |
+
empty = input.new_empty(0)
|
63 |
+
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
|
64 |
+
ctx.save_for_backward(out)
|
65 |
+
ctx.negative_slope = negative_slope
|
66 |
+
ctx.scale = scale
|
67 |
+
|
68 |
+
return out
|
69 |
+
|
70 |
+
@staticmethod
|
71 |
+
def backward(ctx, grad_output):
|
72 |
+
out, = ctx.saved_tensors
|
73 |
+
|
74 |
+
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
|
75 |
+
grad_output, out, ctx.negative_slope, ctx.scale
|
76 |
+
)
|
77 |
+
|
78 |
+
return grad_input, grad_bias, None, None
|
79 |
+
|
80 |
+
|
81 |
+
class FusedLeakyReLU(nn.Module):
|
82 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
86 |
+
self.negative_slope = negative_slope
|
87 |
+
self.scale = scale
|
88 |
+
|
89 |
+
def forward(self, input):
|
90 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
91 |
+
|
92 |
+
|
93 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
94 |
+
if input.device.type == "cpu":
|
95 |
+
rest_dim = [1] * (input.ndim - bias.ndim - 1)
|
96 |
+
return (
|
97 |
+
F.leaky_relu(
|
98 |
+
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
|
99 |
+
)
|
100 |
+
* scale
|
101 |
+
)
|
102 |
+
|
103 |
+
else:
|
104 |
+
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
op/fused_bias_act.cpp
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
|
3 |
+
|
4 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
5 |
+
int act, int grad, float alpha, float scale);
|
6 |
+
|
7 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
8 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
9 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
10 |
+
|
11 |
+
torch::Tensor fused_bias_act(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
12 |
+
int act, int grad, float alpha, float scale) {
|
13 |
+
CHECK_CUDA(input);
|
14 |
+
CHECK_CUDA(bias);
|
15 |
+
|
16 |
+
return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
|
17 |
+
}
|
18 |
+
|
19 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
20 |
+
m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
|
21 |
+
}
|
op/fused_bias_act_kernel.cu
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
//
|
3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
// To view a copy of this license, visit
|
5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
+
|
7 |
+
#include <torch/types.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/cuda/CUDAContext.h>
|
12 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
13 |
+
|
14 |
+
#include <cuda.h>
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
|
17 |
+
|
18 |
+
template <typename scalar_t>
|
19 |
+
static __global__ void fused_bias_act_kernel(scalar_t* out, const scalar_t* p_x, const scalar_t* p_b, const scalar_t* p_ref,
|
20 |
+
int act, int grad, scalar_t alpha, scalar_t scale, int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) {
|
21 |
+
int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x;
|
22 |
+
|
23 |
+
scalar_t zero = 0.0;
|
24 |
+
|
25 |
+
for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; loop_idx++, xi += blockDim.x) {
|
26 |
+
scalar_t x = p_x[xi];
|
27 |
+
|
28 |
+
if (use_bias) {
|
29 |
+
x += p_b[(xi / step_b) % size_b];
|
30 |
+
}
|
31 |
+
|
32 |
+
scalar_t ref = use_ref ? p_ref[xi] : zero;
|
33 |
+
|
34 |
+
scalar_t y;
|
35 |
+
|
36 |
+
switch (act * 10 + grad) {
|
37 |
+
default:
|
38 |
+
case 10: y = x; break;
|
39 |
+
case 11: y = x; break;
|
40 |
+
case 12: y = 0.0; break;
|
41 |
+
|
42 |
+
case 30: y = (x > 0.0) ? x : x * alpha; break;
|
43 |
+
case 31: y = (ref > 0.0) ? x : x * alpha; break;
|
44 |
+
case 32: y = 0.0; break;
|
45 |
+
}
|
46 |
+
|
47 |
+
out[xi] = y * scale;
|
48 |
+
}
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
53 |
+
int act, int grad, float alpha, float scale) {
|
54 |
+
int curDevice = -1;
|
55 |
+
cudaGetDevice(&curDevice);
|
56 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
57 |
+
|
58 |
+
auto x = input.contiguous();
|
59 |
+
auto b = bias.contiguous();
|
60 |
+
auto ref = refer.contiguous();
|
61 |
+
|
62 |
+
int use_bias = b.numel() ? 1 : 0;
|
63 |
+
int use_ref = ref.numel() ? 1 : 0;
|
64 |
+
|
65 |
+
int size_x = x.numel();
|
66 |
+
int size_b = b.numel();
|
67 |
+
int step_b = 1;
|
68 |
+
|
69 |
+
for (int i = 1 + 1; i < x.dim(); i++) {
|
70 |
+
step_b *= x.size(i);
|
71 |
+
}
|
72 |
+
|
73 |
+
int loop_x = 4;
|
74 |
+
int block_size = 4 * 32;
|
75 |
+
int grid_size = (size_x - 1) / (loop_x * block_size) + 1;
|
76 |
+
|
77 |
+
auto y = torch::empty_like(x);
|
78 |
+
|
79 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "fused_bias_act_kernel", [&] {
|
80 |
+
fused_bias_act_kernel<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
81 |
+
y.data_ptr<scalar_t>(),
|
82 |
+
x.data_ptr<scalar_t>(),
|
83 |
+
b.data_ptr<scalar_t>(),
|
84 |
+
ref.data_ptr<scalar_t>(),
|
85 |
+
act,
|
86 |
+
grad,
|
87 |
+
alpha,
|
88 |
+
scale,
|
89 |
+
loop_x,
|
90 |
+
size_x,
|
91 |
+
step_b,
|
92 |
+
size_b,
|
93 |
+
use_bias,
|
94 |
+
use_ref
|
95 |
+
);
|
96 |
+
});
|
97 |
+
|
98 |
+
return y;
|
99 |
+
}
|
op/upfirdn2d.cpp
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
|
3 |
+
|
4 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
|
5 |
+
int up_x, int up_y, int down_x, int down_y,
|
6 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1);
|
7 |
+
|
8 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
9 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
10 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
11 |
+
|
12 |
+
torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel,
|
13 |
+
int up_x, int up_y, int down_x, int down_y,
|
14 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
|
15 |
+
CHECK_CUDA(input);
|
16 |
+
CHECK_CUDA(kernel);
|
17 |
+
|
18 |
+
return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1);
|
19 |
+
}
|
20 |
+
|
21 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
22 |
+
m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)");
|
23 |
+
}
|
op/upfirdn2d.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torch.autograd import Function
|
6 |
+
from torch.utils.cpp_extension import load
|
7 |
+
|
8 |
+
|
9 |
+
module_path = os.path.dirname(__file__)
|
10 |
+
|
11 |
+
cuda_available = torch.cuda.is_available()
|
12 |
+
|
13 |
+
if cuda_available:
|
14 |
+
upfirdn2d_op = load(
|
15 |
+
"upfirdn2d",
|
16 |
+
sources=[
|
17 |
+
os.path.join(module_path, "upfirdn2d.cpp"),
|
18 |
+
os.path.join(module_path, "upfirdn2d_kernel.cu"),
|
19 |
+
],
|
20 |
+
)
|
21 |
+
else:
|
22 |
+
fused = None
|
23 |
+
print("upfirdn2d.py is running on cpu")
|
24 |
+
|
25 |
+
|
26 |
+
class UpFirDn2dBackward(Function):
|
27 |
+
@staticmethod
|
28 |
+
def forward(
|
29 |
+
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
|
30 |
+
):
|
31 |
+
|
32 |
+
up_x, up_y = up
|
33 |
+
down_x, down_y = down
|
34 |
+
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
|
35 |
+
|
36 |
+
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
|
37 |
+
|
38 |
+
grad_input = upfirdn2d_op.upfirdn2d(
|
39 |
+
grad_output,
|
40 |
+
grad_kernel,
|
41 |
+
down_x,
|
42 |
+
down_y,
|
43 |
+
up_x,
|
44 |
+
up_y,
|
45 |
+
g_pad_x0,
|
46 |
+
g_pad_x1,
|
47 |
+
g_pad_y0,
|
48 |
+
g_pad_y1,
|
49 |
+
)
|
50 |
+
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
|
51 |
+
|
52 |
+
ctx.save_for_backward(kernel)
|
53 |
+
|
54 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
55 |
+
|
56 |
+
ctx.up_x = up_x
|
57 |
+
ctx.up_y = up_y
|
58 |
+
ctx.down_x = down_x
|
59 |
+
ctx.down_y = down_y
|
60 |
+
ctx.pad_x0 = pad_x0
|
61 |
+
ctx.pad_x1 = pad_x1
|
62 |
+
ctx.pad_y0 = pad_y0
|
63 |
+
ctx.pad_y1 = pad_y1
|
64 |
+
ctx.in_size = in_size
|
65 |
+
ctx.out_size = out_size
|
66 |
+
|
67 |
+
return grad_input
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def backward(ctx, gradgrad_input):
|
71 |
+
kernel, = ctx.saved_tensors
|
72 |
+
|
73 |
+
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
|
74 |
+
|
75 |
+
gradgrad_out = upfirdn2d_op.upfirdn2d(
|
76 |
+
gradgrad_input,
|
77 |
+
kernel,
|
78 |
+
ctx.up_x,
|
79 |
+
ctx.up_y,
|
80 |
+
ctx.down_x,
|
81 |
+
ctx.down_y,
|
82 |
+
ctx.pad_x0,
|
83 |
+
ctx.pad_x1,
|
84 |
+
ctx.pad_y0,
|
85 |
+
ctx.pad_y1,
|
86 |
+
)
|
87 |
+
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
|
88 |
+
gradgrad_out = gradgrad_out.view(
|
89 |
+
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
|
90 |
+
)
|
91 |
+
|
92 |
+
return gradgrad_out, None, None, None, None, None, None, None, None
|
93 |
+
|
94 |
+
|
95 |
+
class UpFirDn2d(Function):
|
96 |
+
@staticmethod
|
97 |
+
def forward(ctx, input, kernel, up, down, pad):
|
98 |
+
up_x, up_y = up
|
99 |
+
down_x, down_y = down
|
100 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
101 |
+
|
102 |
+
kernel_h, kernel_w = kernel.shape
|
103 |
+
batch, channel, in_h, in_w = input.shape
|
104 |
+
ctx.in_size = input.shape
|
105 |
+
|
106 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
107 |
+
|
108 |
+
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
|
109 |
+
|
110 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
111 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
112 |
+
ctx.out_size = (out_h, out_w)
|
113 |
+
|
114 |
+
ctx.up = (up_x, up_y)
|
115 |
+
ctx.down = (down_x, down_y)
|
116 |
+
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
|
117 |
+
|
118 |
+
g_pad_x0 = kernel_w - pad_x0 - 1
|
119 |
+
g_pad_y0 = kernel_h - pad_y0 - 1
|
120 |
+
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
|
121 |
+
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
|
122 |
+
|
123 |
+
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
|
124 |
+
|
125 |
+
out = upfirdn2d_op.upfirdn2d(
|
126 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
127 |
+
)
|
128 |
+
# out = out.view(major, out_h, out_w, minor)
|
129 |
+
out = out.view(-1, channel, out_h, out_w)
|
130 |
+
|
131 |
+
return out
|
132 |
+
|
133 |
+
@staticmethod
|
134 |
+
def backward(ctx, grad_output):
|
135 |
+
kernel, grad_kernel = ctx.saved_tensors
|
136 |
+
|
137 |
+
grad_input = UpFirDn2dBackward.apply(
|
138 |
+
grad_output,
|
139 |
+
kernel,
|
140 |
+
grad_kernel,
|
141 |
+
ctx.up,
|
142 |
+
ctx.down,
|
143 |
+
ctx.pad,
|
144 |
+
ctx.g_pad,
|
145 |
+
ctx.in_size,
|
146 |
+
ctx.out_size,
|
147 |
+
)
|
148 |
+
|
149 |
+
return grad_input, None, None, None, None
|
150 |
+
|
151 |
+
|
152 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
153 |
+
if input.device.type == "cpu":
|
154 |
+
out = upfirdn2d_native(
|
155 |
+
input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]
|
156 |
+
)
|
157 |
+
|
158 |
+
else:
|
159 |
+
out = UpFirDn2d.apply(
|
160 |
+
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
|
161 |
+
)
|
162 |
+
|
163 |
+
return out
|
164 |
+
|
165 |
+
|
166 |
+
def upfirdn2d_native(
|
167 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
168 |
+
):
|
169 |
+
_, channel, in_h, in_w = input.shape
|
170 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
171 |
+
|
172 |
+
_, in_h, in_w, minor = input.shape
|
173 |
+
kernel_h, kernel_w = kernel.shape
|
174 |
+
|
175 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
176 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
177 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
178 |
+
|
179 |
+
out = F.pad(
|
180 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
181 |
+
)
|
182 |
+
out = out[
|
183 |
+
:,
|
184 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
185 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
186 |
+
:,
|
187 |
+
]
|
188 |
+
|
189 |
+
out = out.permute(0, 3, 1, 2)
|
190 |
+
out = out.reshape(
|
191 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
192 |
+
)
|
193 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
194 |
+
out = F.conv2d(out, w)
|
195 |
+
out = out.reshape(
|
196 |
+
-1,
|
197 |
+
minor,
|
198 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
199 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
200 |
+
)
|
201 |
+
out = out.permute(0, 2, 3, 1)
|
202 |
+
out = out[:, ::down_y, ::down_x, :]
|
203 |
+
|
204 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
205 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
206 |
+
|
207 |
+
return out.view(-1, channel, out_h, out_w)
|
op/upfirdn2d_kernel.cu
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
//
|
3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
// To view a copy of this license, visit
|
5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
+
|
7 |
+
#include <torch/types.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
12 |
+
#include <ATen/cuda/CUDAContext.h>
|
13 |
+
|
14 |
+
#include <cuda.h>
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
|
17 |
+
static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
|
18 |
+
int c = a / b;
|
19 |
+
|
20 |
+
if (c * b > a) {
|
21 |
+
c--;
|
22 |
+
}
|
23 |
+
|
24 |
+
return c;
|
25 |
+
}
|
26 |
+
|
27 |
+
struct UpFirDn2DKernelParams {
|
28 |
+
int up_x;
|
29 |
+
int up_y;
|
30 |
+
int down_x;
|
31 |
+
int down_y;
|
32 |
+
int pad_x0;
|
33 |
+
int pad_x1;
|
34 |
+
int pad_y0;
|
35 |
+
int pad_y1;
|
36 |
+
|
37 |
+
int major_dim;
|
38 |
+
int in_h;
|
39 |
+
int in_w;
|
40 |
+
int minor_dim;
|
41 |
+
int kernel_h;
|
42 |
+
int kernel_w;
|
43 |
+
int out_h;
|
44 |
+
int out_w;
|
45 |
+
int loop_major;
|
46 |
+
int loop_x;
|
47 |
+
};
|
48 |
+
|
49 |
+
template <typename scalar_t>
|
50 |
+
__global__ void upfirdn2d_kernel_large(scalar_t *out, const scalar_t *input,
|
51 |
+
const scalar_t *kernel,
|
52 |
+
const UpFirDn2DKernelParams p) {
|
53 |
+
int minor_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
54 |
+
int out_y = minor_idx / p.minor_dim;
|
55 |
+
minor_idx -= out_y * p.minor_dim;
|
56 |
+
int out_x_base = blockIdx.y * p.loop_x * blockDim.y + threadIdx.y;
|
57 |
+
int major_idx_base = blockIdx.z * p.loop_major;
|
58 |
+
|
59 |
+
if (out_x_base >= p.out_w || out_y >= p.out_h ||
|
60 |
+
major_idx_base >= p.major_dim) {
|
61 |
+
return;
|
62 |
+
}
|
63 |
+
|
64 |
+
int mid_y = out_y * p.down_y + p.up_y - 1 - p.pad_y0;
|
65 |
+
int in_y = min(max(floor_div(mid_y, p.up_y), 0), p.in_h);
|
66 |
+
int h = min(max(floor_div(mid_y + p.kernel_h, p.up_y), 0), p.in_h) - in_y;
|
67 |
+
int kernel_y = mid_y + p.kernel_h - (in_y + 1) * p.up_y;
|
68 |
+
|
69 |
+
for (int loop_major = 0, major_idx = major_idx_base;
|
70 |
+
loop_major < p.loop_major && major_idx < p.major_dim;
|
71 |
+
loop_major++, major_idx++) {
|
72 |
+
for (int loop_x = 0, out_x = out_x_base;
|
73 |
+
loop_x < p.loop_x && out_x < p.out_w; loop_x++, out_x += blockDim.y) {
|
74 |
+
int mid_x = out_x * p.down_x + p.up_x - 1 - p.pad_x0;
|
75 |
+
int in_x = min(max(floor_div(mid_x, p.up_x), 0), p.in_w);
|
76 |
+
int w = min(max(floor_div(mid_x + p.kernel_w, p.up_x), 0), p.in_w) - in_x;
|
77 |
+
int kernel_x = mid_x + p.kernel_w - (in_x + 1) * p.up_x;
|
78 |
+
|
79 |
+
const scalar_t *x_p =
|
80 |
+
&input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim +
|
81 |
+
minor_idx];
|
82 |
+
const scalar_t *k_p = &kernel[kernel_y * p.kernel_w + kernel_x];
|
83 |
+
int x_px = p.minor_dim;
|
84 |
+
int k_px = -p.up_x;
|
85 |
+
int x_py = p.in_w * p.minor_dim;
|
86 |
+
int k_py = -p.up_y * p.kernel_w;
|
87 |
+
|
88 |
+
scalar_t v = 0.0f;
|
89 |
+
|
90 |
+
for (int y = 0; y < h; y++) {
|
91 |
+
for (int x = 0; x < w; x++) {
|
92 |
+
v += static_cast<scalar_t>(*x_p) * static_cast<scalar_t>(*k_p);
|
93 |
+
x_p += x_px;
|
94 |
+
k_p += k_px;
|
95 |
+
}
|
96 |
+
|
97 |
+
x_p += x_py - w * x_px;
|
98 |
+
k_p += k_py - w * k_px;
|
99 |
+
}
|
100 |
+
|
101 |
+
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
|
102 |
+
minor_idx] = v;
|
103 |
+
}
|
104 |
+
}
|
105 |
+
}
|
106 |
+
|
107 |
+
template <typename scalar_t, int up_x, int up_y, int down_x, int down_y,
|
108 |
+
int kernel_h, int kernel_w, int tile_out_h, int tile_out_w>
|
109 |
+
__global__ void upfirdn2d_kernel(scalar_t *out, const scalar_t *input,
|
110 |
+
const scalar_t *kernel,
|
111 |
+
const UpFirDn2DKernelParams p) {
|
112 |
+
const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
|
113 |
+
const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
|
114 |
+
|
115 |
+
__shared__ volatile float sk[kernel_h][kernel_w];
|
116 |
+
__shared__ volatile float sx[tile_in_h][tile_in_w];
|
117 |
+
|
118 |
+
int minor_idx = blockIdx.x;
|
119 |
+
int tile_out_y = minor_idx / p.minor_dim;
|
120 |
+
minor_idx -= tile_out_y * p.minor_dim;
|
121 |
+
tile_out_y *= tile_out_h;
|
122 |
+
int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
|
123 |
+
int major_idx_base = blockIdx.z * p.loop_major;
|
124 |
+
|
125 |
+
if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h |
|
126 |
+
major_idx_base >= p.major_dim) {
|
127 |
+
return;
|
128 |
+
}
|
129 |
+
|
130 |
+
for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w;
|
131 |
+
tap_idx += blockDim.x) {
|
132 |
+
int ky = tap_idx / kernel_w;
|
133 |
+
int kx = tap_idx - ky * kernel_w;
|
134 |
+
scalar_t v = 0.0;
|
135 |
+
|
136 |
+
if (kx < p.kernel_w & ky < p.kernel_h) {
|
137 |
+
v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
|
138 |
+
}
|
139 |
+
|
140 |
+
sk[ky][kx] = v;
|
141 |
+
}
|
142 |
+
|
143 |
+
for (int loop_major = 0, major_idx = major_idx_base;
|
144 |
+
loop_major < p.loop_major & major_idx < p.major_dim;
|
145 |
+
loop_major++, major_idx++) {
|
146 |
+
for (int loop_x = 0, tile_out_x = tile_out_x_base;
|
147 |
+
loop_x < p.loop_x & tile_out_x < p.out_w;
|
148 |
+
loop_x++, tile_out_x += tile_out_w) {
|
149 |
+
int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
|
150 |
+
int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
|
151 |
+
int tile_in_x = floor_div(tile_mid_x, up_x);
|
152 |
+
int tile_in_y = floor_div(tile_mid_y, up_y);
|
153 |
+
|
154 |
+
__syncthreads();
|
155 |
+
|
156 |
+
for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w;
|
157 |
+
in_idx += blockDim.x) {
|
158 |
+
int rel_in_y = in_idx / tile_in_w;
|
159 |
+
int rel_in_x = in_idx - rel_in_y * tile_in_w;
|
160 |
+
int in_x = rel_in_x + tile_in_x;
|
161 |
+
int in_y = rel_in_y + tile_in_y;
|
162 |
+
|
163 |
+
scalar_t v = 0.0;
|
164 |
+
|
165 |
+
if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
|
166 |
+
v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) *
|
167 |
+
p.minor_dim +
|
168 |
+
minor_idx];
|
169 |
+
}
|
170 |
+
|
171 |
+
sx[rel_in_y][rel_in_x] = v;
|
172 |
+
}
|
173 |
+
|
174 |
+
__syncthreads();
|
175 |
+
for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w;
|
176 |
+
out_idx += blockDim.x) {
|
177 |
+
int rel_out_y = out_idx / tile_out_w;
|
178 |
+
int rel_out_x = out_idx - rel_out_y * tile_out_w;
|
179 |
+
int out_x = rel_out_x + tile_out_x;
|
180 |
+
int out_y = rel_out_y + tile_out_y;
|
181 |
+
|
182 |
+
int mid_x = tile_mid_x + rel_out_x * down_x;
|
183 |
+
int mid_y = tile_mid_y + rel_out_y * down_y;
|
184 |
+
int in_x = floor_div(mid_x, up_x);
|
185 |
+
int in_y = floor_div(mid_y, up_y);
|
186 |
+
int rel_in_x = in_x - tile_in_x;
|
187 |
+
int rel_in_y = in_y - tile_in_y;
|
188 |
+
int kernel_x = (in_x + 1) * up_x - mid_x - 1;
|
189 |
+
int kernel_y = (in_y + 1) * up_y - mid_y - 1;
|
190 |
+
|
191 |
+
scalar_t v = 0.0;
|
192 |
+
|
193 |
+
#pragma unroll
|
194 |
+
for (int y = 0; y < kernel_h / up_y; y++)
|
195 |
+
#pragma unroll
|
196 |
+
for (int x = 0; x < kernel_w / up_x; x++)
|
197 |
+
v += sx[rel_in_y + y][rel_in_x + x] *
|
198 |
+
sk[kernel_y + y * up_y][kernel_x + x * up_x];
|
199 |
+
|
200 |
+
if (out_x < p.out_w & out_y < p.out_h) {
|
201 |
+
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
|
202 |
+
minor_idx] = v;
|
203 |
+
}
|
204 |
+
}
|
205 |
+
}
|
206 |
+
}
|
207 |
+
}
|
208 |
+
|
209 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor &input,
|
210 |
+
const torch::Tensor &kernel, int up_x, int up_y,
|
211 |
+
int down_x, int down_y, int pad_x0, int pad_x1,
|
212 |
+
int pad_y0, int pad_y1) {
|
213 |
+
int curDevice = -1;
|
214 |
+
cudaGetDevice(&curDevice);
|
215 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
216 |
+
|
217 |
+
UpFirDn2DKernelParams p;
|
218 |
+
|
219 |
+
auto x = input.contiguous();
|
220 |
+
auto k = kernel.contiguous();
|
221 |
+
|
222 |
+
p.major_dim = x.size(0);
|
223 |
+
p.in_h = x.size(1);
|
224 |
+
p.in_w = x.size(2);
|
225 |
+
p.minor_dim = x.size(3);
|
226 |
+
p.kernel_h = k.size(0);
|
227 |
+
p.kernel_w = k.size(1);
|
228 |
+
p.up_x = up_x;
|
229 |
+
p.up_y = up_y;
|
230 |
+
p.down_x = down_x;
|
231 |
+
p.down_y = down_y;
|
232 |
+
p.pad_x0 = pad_x0;
|
233 |
+
p.pad_x1 = pad_x1;
|
234 |
+
p.pad_y0 = pad_y0;
|
235 |
+
p.pad_y1 = pad_y1;
|
236 |
+
|
237 |
+
p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) /
|
238 |
+
p.down_y;
|
239 |
+
p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) /
|
240 |
+
p.down_x;
|
241 |
+
|
242 |
+
auto out =
|
243 |
+
at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
|
244 |
+
|
245 |
+
int mode = -1;
|
246 |
+
|
247 |
+
int tile_out_h = -1;
|
248 |
+
int tile_out_w = -1;
|
249 |
+
|
250 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
|
251 |
+
p.kernel_h <= 4 && p.kernel_w <= 4) {
|
252 |
+
mode = 1;
|
253 |
+
tile_out_h = 16;
|
254 |
+
tile_out_w = 64;
|
255 |
+
}
|
256 |
+
|
257 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
|
258 |
+
p.kernel_h <= 3 && p.kernel_w <= 3) {
|
259 |
+
mode = 2;
|
260 |
+
tile_out_h = 16;
|
261 |
+
tile_out_w = 64;
|
262 |
+
}
|
263 |
+
|
264 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
|
265 |
+
p.kernel_h <= 4 && p.kernel_w <= 4) {
|
266 |
+
mode = 3;
|
267 |
+
tile_out_h = 16;
|
268 |
+
tile_out_w = 64;
|
269 |
+
}
|
270 |
+
|
271 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
|
272 |
+
p.kernel_h <= 2 && p.kernel_w <= 2) {
|
273 |
+
mode = 4;
|
274 |
+
tile_out_h = 16;
|
275 |
+
tile_out_w = 64;
|
276 |
+
}
|
277 |
+
|
278 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
|
279 |
+
p.kernel_h <= 4 && p.kernel_w <= 4) {
|
280 |
+
mode = 5;
|
281 |
+
tile_out_h = 8;
|
282 |
+
tile_out_w = 32;
|
283 |
+
}
|
284 |
+
|
285 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
|
286 |
+
p.kernel_h <= 2 && p.kernel_w <= 2) {
|
287 |
+
mode = 6;
|
288 |
+
tile_out_h = 8;
|
289 |
+
tile_out_w = 32;
|
290 |
+
}
|
291 |
+
|
292 |
+
dim3 block_size;
|
293 |
+
dim3 grid_size;
|
294 |
+
|
295 |
+
if (tile_out_h > 0 && tile_out_w > 0) {
|
296 |
+
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
297 |
+
p.loop_x = 1;
|
298 |
+
block_size = dim3(32 * 8, 1, 1);
|
299 |
+
grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
|
300 |
+
(p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
|
301 |
+
(p.major_dim - 1) / p.loop_major + 1);
|
302 |
+
} else {
|
303 |
+
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
304 |
+
p.loop_x = 4;
|
305 |
+
block_size = dim3(4, 32, 1);
|
306 |
+
grid_size = dim3((p.out_h * p.minor_dim - 1) / block_size.x + 1,
|
307 |
+
(p.out_w - 1) / (p.loop_x * block_size.y) + 1,
|
308 |
+
(p.major_dim - 1) / p.loop_major + 1);
|
309 |
+
}
|
310 |
+
|
311 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
|
312 |
+
switch (mode) {
|
313 |
+
case 1:
|
314 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64>
|
315 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
316 |
+
x.data_ptr<scalar_t>(),
|
317 |
+
k.data_ptr<scalar_t>(), p);
|
318 |
+
|
319 |
+
break;
|
320 |
+
|
321 |
+
case 2:
|
322 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64>
|
323 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
324 |
+
x.data_ptr<scalar_t>(),
|
325 |
+
k.data_ptr<scalar_t>(), p);
|
326 |
+
|
327 |
+
break;
|
328 |
+
|
329 |
+
case 3:
|
330 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64>
|
331 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
332 |
+
x.data_ptr<scalar_t>(),
|
333 |
+
k.data_ptr<scalar_t>(), p);
|
334 |
+
|
335 |
+
break;
|
336 |
+
|
337 |
+
case 4:
|
338 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64>
|
339 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
340 |
+
x.data_ptr<scalar_t>(),
|
341 |
+
k.data_ptr<scalar_t>(), p);
|
342 |
+
|
343 |
+
break;
|
344 |
+
|
345 |
+
case 5:
|
346 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
|
347 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
348 |
+
x.data_ptr<scalar_t>(),
|
349 |
+
k.data_ptr<scalar_t>(), p);
|
350 |
+
|
351 |
+
break;
|
352 |
+
|
353 |
+
case 6:
|
354 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
|
355 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
356 |
+
x.data_ptr<scalar_t>(),
|
357 |
+
k.data_ptr<scalar_t>(), p);
|
358 |
+
|
359 |
+
break;
|
360 |
+
|
361 |
+
default:
|
362 |
+
upfirdn2d_kernel_large<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
363 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(),
|
364 |
+
k.data_ptr<scalar_t>(), p);
|
365 |
+
}
|
366 |
+
});
|
367 |
+
|
368 |
+
return out;
|
369 |
+
}
|
psp_encoder/__init__.py
ADDED
File without changes
|
psp_encoder/helpers.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
import torch
|
3 |
+
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
|
4 |
+
|
5 |
+
"""
|
6 |
+
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
7 |
+
"""
|
8 |
+
|
9 |
+
|
10 |
+
class Flatten(Module):
|
11 |
+
def forward(self, input):
|
12 |
+
return input.view(input.size(0), -1)
|
13 |
+
|
14 |
+
|
15 |
+
def l2_norm(input, axis=1):
|
16 |
+
norm = torch.norm(input, 2, axis, True)
|
17 |
+
output = torch.div(input, norm)
|
18 |
+
return output
|
19 |
+
|
20 |
+
|
21 |
+
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
|
22 |
+
""" A named tuple describing a ResNet block. """
|
23 |
+
|
24 |
+
|
25 |
+
def get_block(in_channel, depth, num_units, stride=2):
|
26 |
+
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
|
27 |
+
|
28 |
+
|
29 |
+
def get_blocks(num_layers):
|
30 |
+
if num_layers == 50:
|
31 |
+
blocks = [
|
32 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
33 |
+
get_block(in_channel=64, depth=128, num_units=4),
|
34 |
+
get_block(in_channel=128, depth=256, num_units=14),
|
35 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
36 |
+
]
|
37 |
+
elif num_layers == 100:
|
38 |
+
blocks = [
|
39 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
40 |
+
get_block(in_channel=64, depth=128, num_units=13),
|
41 |
+
get_block(in_channel=128, depth=256, num_units=30),
|
42 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
43 |
+
]
|
44 |
+
elif num_layers == 152:
|
45 |
+
blocks = [
|
46 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
47 |
+
get_block(in_channel=64, depth=128, num_units=8),
|
48 |
+
get_block(in_channel=128, depth=256, num_units=36),
|
49 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
50 |
+
]
|
51 |
+
else:
|
52 |
+
raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
|
53 |
+
return blocks
|
54 |
+
|
55 |
+
|
56 |
+
class SEModule(Module):
|
57 |
+
def __init__(self, channels, reduction):
|
58 |
+
super(SEModule, self).__init__()
|
59 |
+
self.avg_pool = AdaptiveAvgPool2d(1)
|
60 |
+
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
|
61 |
+
self.relu = ReLU(inplace=True)
|
62 |
+
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
|
63 |
+
self.sigmoid = Sigmoid()
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
module_input = x
|
67 |
+
x = self.avg_pool(x)
|
68 |
+
x = self.fc1(x)
|
69 |
+
x = self.relu(x)
|
70 |
+
x = self.fc2(x)
|
71 |
+
x = self.sigmoid(x)
|
72 |
+
return module_input * x
|
73 |
+
|
74 |
+
|
75 |
+
class bottleneck_IR(Module):
|
76 |
+
def __init__(self, in_channel, depth, stride):
|
77 |
+
super(bottleneck_IR, self).__init__()
|
78 |
+
if in_channel == depth:
|
79 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
80 |
+
else:
|
81 |
+
self.shortcut_layer = Sequential(
|
82 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
83 |
+
BatchNorm2d(depth)
|
84 |
+
)
|
85 |
+
self.res_layer = Sequential(
|
86 |
+
BatchNorm2d(in_channel),
|
87 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
|
88 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
|
89 |
+
)
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
shortcut = self.shortcut_layer(x)
|
93 |
+
res = self.res_layer(x)
|
94 |
+
return res + shortcut
|
95 |
+
|
96 |
+
|
97 |
+
class bottleneck_IR_SE(Module):
|
98 |
+
def __init__(self, in_channel, depth, stride):
|
99 |
+
super(bottleneck_IR_SE, self).__init__()
|
100 |
+
if in_channel == depth:
|
101 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
102 |
+
else:
|
103 |
+
self.shortcut_layer = Sequential(
|
104 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
105 |
+
BatchNorm2d(depth)
|
106 |
+
)
|
107 |
+
self.res_layer = Sequential(
|
108 |
+
BatchNorm2d(in_channel),
|
109 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
|
110 |
+
PReLU(depth),
|
111 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
|
112 |
+
BatchNorm2d(depth),
|
113 |
+
SEModule(depth, 16)
|
114 |
+
)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
shortcut = self.shortcut_layer(x)
|
118 |
+
res = self.res_layer(x)
|
119 |
+
return res + shortcut
|
psp_encoder/psp_encoders.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import Conv2d, BatchNorm2d, PReLU, Sequential, Module
|
6 |
+
import math
|
7 |
+
|
8 |
+
from .helpers import get_blocks, bottleneck_IR, bottleneck_IR_SE
|
9 |
+
|
10 |
+
import sys, os
|
11 |
+
sys.path.append(os.path.dirname(__file__) + os.sep + '../')
|
12 |
+
from model import EqualLinear
|
13 |
+
|
14 |
+
|
15 |
+
"""
|
16 |
+
Modified from [pSp](https://github.com/eladrich/pixel2style2pixel)
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
class GradualStyleBlock(Module):
|
21 |
+
def __init__(self, in_c, out_c, spatial):
|
22 |
+
super(GradualStyleBlock, self).__init__()
|
23 |
+
self.out_c = out_c
|
24 |
+
self.spatial = spatial
|
25 |
+
num_pools = int(np.log2(spatial))
|
26 |
+
modules = []
|
27 |
+
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
|
28 |
+
nn.LeakyReLU()]
|
29 |
+
for i in range(num_pools - 1):
|
30 |
+
modules += [
|
31 |
+
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
|
32 |
+
nn.LeakyReLU()
|
33 |
+
]
|
34 |
+
self.convs = nn.Sequential(*modules)
|
35 |
+
self.linear = EqualLinear(out_c, out_c, lr_mul=1)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
x = self.convs(x)
|
39 |
+
x = x.view(-1, self.out_c)
|
40 |
+
x = self.linear(x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
class GradualStyleEncoder(Module):
|
45 |
+
def __init__(self, num_layers, mode='ir', n_styles=18):
|
46 |
+
super(GradualStyleEncoder, self).__init__()
|
47 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
48 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
49 |
+
blocks = get_blocks(num_layers)
|
50 |
+
if mode == 'ir':
|
51 |
+
unit_module = bottleneck_IR
|
52 |
+
elif mode == 'ir_se':
|
53 |
+
unit_module = bottleneck_IR_SE
|
54 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
55 |
+
BatchNorm2d(64),
|
56 |
+
PReLU(64))
|
57 |
+
modules = []
|
58 |
+
for block in blocks:
|
59 |
+
for bottleneck in block:
|
60 |
+
modules.append(unit_module(bottleneck.in_channel,
|
61 |
+
bottleneck.depth,
|
62 |
+
bottleneck.stride))
|
63 |
+
self.body = Sequential(*modules)
|
64 |
+
|
65 |
+
self.styles = nn.ModuleList()
|
66 |
+
self.style_count = n_styles # opts.n_styles
|
67 |
+
self.coarse_ind = 3
|
68 |
+
self.middle_ind = 7
|
69 |
+
for i in range(self.style_count):
|
70 |
+
if i < self.coarse_ind:
|
71 |
+
style = GradualStyleBlock(512, 512, 16)
|
72 |
+
elif i < self.middle_ind:
|
73 |
+
style = GradualStyleBlock(512, 512, 32)
|
74 |
+
else:
|
75 |
+
style = GradualStyleBlock(512, 512, 64)
|
76 |
+
self.styles.append(style)
|
77 |
+
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
|
78 |
+
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
|
79 |
+
|
80 |
+
def _upsample_add(self, x, y):
|
81 |
+
'''Upsample and add two feature maps.
|
82 |
+
Args:
|
83 |
+
x: (Variable) top feature map to be upsampled.
|
84 |
+
y: (Variable) lateral feature map.
|
85 |
+
Returns:
|
86 |
+
(Variable) added feature map.
|
87 |
+
Note in PyTorch, when input size is odd, the upsampled feature map
|
88 |
+
with `F.upsample(..., scale_factor=2, mode='nearest')`
|
89 |
+
maybe not equal to the lateral feature map size.
|
90 |
+
e.g.
|
91 |
+
original input size: [N,_,15,15] ->
|
92 |
+
conv2d feature map size: [N,_,8,8] ->
|
93 |
+
upsampled feature map size: [N,_,16,16]
|
94 |
+
So we choose bilinear upsample which supports arbitrary output sizes.
|
95 |
+
'''
|
96 |
+
_, _, H, W = y.size()
|
97 |
+
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
x = self.input_layer(x)
|
101 |
+
|
102 |
+
latents = []
|
103 |
+
modulelist = list(self.body._modules.values())
|
104 |
+
for i, l in enumerate(modulelist):
|
105 |
+
x = l(x)
|
106 |
+
if i == 6:
|
107 |
+
c1 = x
|
108 |
+
elif i == 20:
|
109 |
+
c2 = x
|
110 |
+
elif i == 23:
|
111 |
+
c3 = x
|
112 |
+
|
113 |
+
for j in range(self.coarse_ind):
|
114 |
+
latents.append(self.styles[j](c3))
|
115 |
+
|
116 |
+
p2 = self._upsample_add(c3, self.latlayer1(c2))
|
117 |
+
for j in range(self.coarse_ind, self.middle_ind):
|
118 |
+
latents.append(self.styles[j](p2))
|
119 |
+
|
120 |
+
p1 = self._upsample_add(p2, self.latlayer2(c1))
|
121 |
+
for j in range(self.middle_ind, self.style_count):
|
122 |
+
latents.append(self.styles[j](p1))
|
123 |
+
|
124 |
+
out = torch.stack(latents, dim=1)
|
125 |
+
return out
|
126 |
+
|
127 |
+
|
128 |
+
def get_keys(d, name):
|
129 |
+
if 'state_dict' in d:
|
130 |
+
d = d['state_dict']
|
131 |
+
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name}
|
132 |
+
return d_filt
|
133 |
+
|
134 |
+
|
135 |
+
class PSPEncoder(Module):
|
136 |
+
def __init__(self, encoder_ckpt_path, output_size=1024):
|
137 |
+
super(PSPEncoder, self).__init__()
|
138 |
+
n_styles = int(math.log(output_size, 2)) * 2 - 2
|
139 |
+
self.encoder = GradualStyleEncoder(50, 'ir_se', n_styles)
|
140 |
+
|
141 |
+
print('Loading psp encoders weights from irse50!')
|
142 |
+
encoder_ckpt = torch.load(encoder_ckpt_path, map_location='cpu')
|
143 |
+
self.encoder.load_state_dict(get_keys(encoder_ckpt, 'encoder'), strict=True)
|
144 |
+
self.latent_avg = encoder_ckpt['latent_avg'].cuda()
|
145 |
+
|
146 |
+
self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256))
|
147 |
+
|
148 |
+
def forward(self, x):
|
149 |
+
x = self.face_pool(x)
|
150 |
+
codes = self.encoder(x)
|
151 |
+
codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1)
|
152 |
+
return codes
|
153 |
+
|
style_transfer_folder.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from model import Generator
|
9 |
+
from psp_encoder.psp_encoders import PSPEncoder
|
10 |
+
from utils import ten2cv, cv2ten
|
11 |
+
import glob
|
12 |
+
import random
|
13 |
+
|
14 |
+
seed = 0
|
15 |
+
|
16 |
+
random.seed(seed)
|
17 |
+
np.random.seed(seed)
|
18 |
+
torch.manual_seed(seed)
|
19 |
+
torch.cuda.manual_seed_all(seed)
|
20 |
+
|
21 |
+
|
22 |
+
if __name__ == '__main__':
|
23 |
+
device = 'cuda'
|
24 |
+
|
25 |
+
parser = argparse.ArgumentParser()
|
26 |
+
|
27 |
+
parser.add_argument('--size', type=int, default=1024)
|
28 |
+
|
29 |
+
parser.add_argument('--ckpt', type=str, default='', help='path to BlendGAN checkpoint')
|
30 |
+
parser.add_argument('--psp_encoder_ckpt', type=str, default='', help='path to psp_encoder checkpoint')
|
31 |
+
|
32 |
+
parser.add_argument('--style_img_path', type=str, default=None, help='path to style image')
|
33 |
+
parser.add_argument('--input_img_path', type=str, default=None, help='path to input image')
|
34 |
+
parser.add_argument('--add_weight_index', type=int, default=6)
|
35 |
+
|
36 |
+
parser.add_argument('--channel_multiplier', type=int, default=2)
|
37 |
+
parser.add_argument('--outdir', type=str, default="")
|
38 |
+
|
39 |
+
args = parser.parse_args()
|
40 |
+
|
41 |
+
outdir = args.outdir
|
42 |
+
if not os.path.exists(outdir):
|
43 |
+
os.makedirs(outdir, exist_ok=True)
|
44 |
+
|
45 |
+
args.latent = 512
|
46 |
+
args.n_mlp = 8
|
47 |
+
|
48 |
+
checkpoint = torch.load(args.ckpt)
|
49 |
+
model_dict = checkpoint['g_ema']
|
50 |
+
print('ckpt: ', args.ckpt)
|
51 |
+
|
52 |
+
g_ema = Generator(
|
53 |
+
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
|
54 |
+
).to(device)
|
55 |
+
g_ema.load_state_dict(model_dict)
|
56 |
+
g_ema.eval()
|
57 |
+
|
58 |
+
psp_encoder = PSPEncoder(args.psp_encoder_ckpt, output_size=args.size).to(device)
|
59 |
+
psp_encoder.eval()
|
60 |
+
|
61 |
+
input_img_paths = sorted(glob.glob(os.path.join(args.input_img_path, '*.*')))
|
62 |
+
style_img_paths = sorted(glob.glob(os.path.join(args.style_img_path, '*.*')))[:]
|
63 |
+
|
64 |
+
num = 0
|
65 |
+
|
66 |
+
for input_img_path in input_img_paths:
|
67 |
+
print(num)
|
68 |
+
num += 1
|
69 |
+
|
70 |
+
name_in = os.path.splitext(os.path.basename(input_img_path))[0]
|
71 |
+
img_in = cv2.imread(input_img_path, 1)
|
72 |
+
img_in_ten = cv2ten(img_in, device)
|
73 |
+
img_in = cv2.resize(img_in, (args.size, args.size))
|
74 |
+
|
75 |
+
for style_img_path in style_img_paths:
|
76 |
+
name_style = os.path.splitext(os.path.basename(style_img_path))[0]
|
77 |
+
img_style = cv2.imread(style_img_path, 1)
|
78 |
+
img_style_ten = cv2ten(img_style, device)
|
79 |
+
img_style = cv2.resize(img_style, (args.size, args.size))
|
80 |
+
|
81 |
+
with torch.no_grad():
|
82 |
+
sample_style = g_ema.get_z_embed(img_style_ten)
|
83 |
+
sample_in = psp_encoder(img_in_ten)
|
84 |
+
img_out_ten, _ = g_ema([sample_in], z_embed=sample_style, add_weight_index=args.add_weight_index,
|
85 |
+
input_is_latent=True, return_latents=False, randomize_noise=False)
|
86 |
+
img_out = ten2cv(img_out_ten)
|
87 |
+
out = np.concatenate([img_in, img_style, img_out], axis=1)
|
88 |
+
# out = img_out
|
89 |
+
cv2.imwrite(f'{args.outdir}/{name_in}_v_{name_style}.jpg', out)
|
90 |
+
|
91 |
+
print('Done!')
|
92 |
+
|
utils.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def cv2ten(img, device):
|
5 |
+
img = (img[:, :, ::-1].transpose(2, 0, 1) / 255. - 0.5) / 0.5
|
6 |
+
img_ten = torch.from_numpy(img).float().unsqueeze(0).to(device)
|
7 |
+
return img_ten
|
8 |
+
|
9 |
+
|
10 |
+
def ten2cv(img_ten, bgr=True):
|
11 |
+
img = img_ten.squeeze(0).mul_(0.5).add_(0.5).mul_(255).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
|
12 |
+
if bgr:
|
13 |
+
img = img[:, :, ::-1]
|
14 |
+
return img
|
15 |
+
|