File size: 2,014 Bytes
7e51154
455bb17
0699239
 
 
9d8908d
0699239
 
9d8908d
0699239
 
c885e53
b6679b7
1d11e4b
c885e53
 
968fdf8
ccfbba4
7e51154
4054722
f77392c
 
4054722
dce67b1
c885e53
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import os 
import gradio as gr
os.system("pip install googledrivedownloader")
from google_drive_downloader import GoogleDriveDownloader as gdd
gdd.download_file_from_google_drive(file_id='1BnS1T39GQr6LH0J5F1EXliIhgZhJ7EGl',
                                    dest_path='blendgan.pt',
                                    unzip=False)
gdd.download_file_from_google_drive(file_id='1PedYtI-K26FIpr9Iq2xrEgT9_DnPzble',
                                    dest_path='psp_encoder.pt',
                                    unzip=False)

from PIL import Image

def inference(content, style):
    content.save('content.png')
    style.save('style.png')
    os.system("""python style_transfer_folder.py --size 1024 --ckpt ./blendgan.pt --psp_encoder_ckpt ./psp_encoder.pt --style_img_path style.png --input_img_path content.png""")
    return "out.jpg"
  
title = "BlendGAN"
description = "Gradio Demo for BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation. To use it, simply upload your images, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2110.11728' target='_blank'>BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation</a> | <a href='https://github.com/onion-liu/BlendGAN' target='_blank'>Github Repo</a></p><p style='text-align: center'>samples from repo: <img src='https://user-images.githubusercontent.com/6346064/142623312-3e6f09aa-ce88-465c-b956-a8b4db95b4da.gif' alt='animation'/> <img src='https://user-images.githubusercontent.com/6346064/142621044-086cde48-8604-467b-8c43-8768b6670ec2.gif' alt='animation'/></p>"

examples=[['000001.png','100001.png']]
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Image(type="pil")], gr.outputs.Image(type="file"),title=title,description=description,article=article,enable_queue=True,examples=examples,allow_flagging=False).launch()