File size: 2,295 Bytes
7e51154
455bb17
f725fa9
 
b6679b7
1d11e4b
e8a130c
7e51154
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import os 
import gradio as gr
os.system("gdown https://drive.google.com/uc?id=12ElLliRlgGZqPOhUcqJtNVsa7rmzSI5L")
os.system("gdown https://drive.google.com/uc?id=1-79oBWGFQXrKYw9oxX7t468Zrp87NoWn")

def inference(content, style):
    os.system("""python style_transfer_folder.py --size 1024 --ckpt ./blendgan.pt --psp_encoder_ckpt ./psp_encoder.pt --style_img_path /content/BlendGAN/style/ --input_img_path /content/BlendGAN/input/ --outdir results/style_transfer/""")
    return out
  
title = "AnimeGANv2"
description = "Gradio Demo for AnimeGanv2 Face Portrait v2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below."
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a> | <a href='https://github.com/Kazuhito00/AnimeGANv2-ONNX-Sample' target='_blank'>Github Repo ONNX</a></p><p style='text-align: center'>samples from repo: <img src='https://user-images.githubusercontent.com/26464535/129888683-98bb6283-7bb8-4d1a-a04a-e795f5858dcf.gif' alt='animation'/> <img src='https://user-images.githubusercontent.com/26464535/137619176-59620b59-4e20-4d98-9559-a424f86b7f24.jpg' alt='animation'/></p>"
examples=[['groot.jpeg','version 2 (πŸ”Ί robustness,πŸ”» stylization)'],['bill.png','version 1 (πŸ”Ί stylization, πŸ”» robustness)'],['tony.png','version 1 (πŸ”Ί stylization, πŸ”» robustness)'],['elon.png','version 2 (πŸ”Ί robustness,πŸ”» stylization)'],['IU.png','version 1 (πŸ”Ί stylization, πŸ”» robustness)'],['billie.png','version 2 (πŸ”Ί robustness,πŸ”» stylization)'],['will.png','version 2 (πŸ”Ί robustness,πŸ”» stylization)'],['beyonce.jpeg','version 1 (πŸ”Ί stylization, πŸ”» robustness)'],['gongyoo.jpeg','version 1 (πŸ”Ί stylization, πŸ”» robustness)']]
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Radio(['version 1 (πŸ”Ί stylization, πŸ”» robustness)','version 2 (πŸ”Ί robustness,πŸ”» stylization)'], type="value", default='version 2 (πŸ”Ί robustness,πŸ”» stylization)', label='version')
], gr.outputs.Image(type="pil"),title=title,description=description,article=article,enable_queue=True,examples=examples,allow_flagging=False).launch()